Study of functional brain networks in Alzheimer's disease based on 11C-PiB PET images

阈值 统计参数映射 认知障碍 阿尔茨海默病 相关性 核医学 模式识别(心理学) 神经科学 医学 人工智能 计算机科学 心理学 认知 疾病 内科学 数学 磁共振成像 放射科 图像(数学) 几何学
作者
Zena Huang,Jiehui Jiang,Yihui Guan
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine]
卷期号:57: 40-40
摘要

40 Objectives Prior to this study, brain networks are constructed based on fMRI, FDG-PET, etc. This is the first study based on graph theory using 11C-PiB PET data to investigate the characteristics of whole-brain functional network in Alzheimer9s disease. Methods PiB-PET image data of 149 individuals, including 120 from ADNI database (https://ida.loni.usc.edu) and 29 from Huashan Hospital were analyzed. Among which, 34 were Alzheimer’s disease (AD), 43 Mild Cognitive Impairment (MCI) and 72 healthy control (HC). The imaging data was pre-processed using Statistical Parametric Mapping 8 (SPM8). The sparsity threshold method was used to determine the connection between the two brain regions. After thresholding, the correlation coefficient matrix was transformed into a binary matrix that was described as a network. To further investigate the detailed connectivity associated with the brain regions, seed ROI-based correlation analysis method was performed, using ORBinf.L as seed. Results At sparsity 24%, several brain regions were identified as functional hubs in three groups as shown in Figure 1. Among the hubs, significant changes were found in 11 brain regions in AD and MCI group compared with HC: AD>HC: ORBinf.L, PoCG.L, HES.R; (MCI>HC): PreCG.L, SFGdor.R, SMA.R, OLF.R, REC.R, ACG.L, PCG.R, ANG. L. as shown in Figure 2 and detailed in Table 1. Conclusions It is feasible to investigate functional network of AD using 11C-PiB PET imaging. Global efficiency was lower but local efficiency was higher in both MCI and AD compared with HC. The hub regions may play a crucial role in the pathogenesis of AD. Figure 1 hub nodes,HC(left, red), MCI(middle, black)and AD(right, blue) Figure 2 black spots: HC < MCI; blue spots: HC < AD $$graphic_5C6BC201-717C-468C-AA60-31DB9D8DC0F0$$ $$graphic_525AAF4D-72B0-4233-9A14-E5351E84461D$$ Table 1 Detailed information of altered hubs

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李雪慧发布了新的文献求助10
刚刚
1秒前
清秀元霜发布了新的文献求助10
1秒前
Minbao发布了新的文献求助10
2秒前
陈十六完成签到,获得积分20
2秒前
3秒前
坦率的访彤完成签到,获得积分10
5秒前
shy发布了新的文献求助30
5秒前
5秒前
juju发布了新的文献求助10
6秒前
冷安完成签到 ,获得积分10
7秒前
清秀元霜完成签到,获得积分20
7秒前
李雪慧完成签到,获得积分10
9秒前
煜钧完成签到 ,获得积分10
10秒前
11秒前
可爱的函函应助甜的瓜采纳,获得10
11秒前
Minbao完成签到,获得积分10
12秒前
xiaoma发布了新的文献求助10
15秒前
16秒前
19秒前
马克发布了新的文献求助10
22秒前
辞轲完成签到,获得积分10
23秒前
善学以致用应助whisper采纳,获得10
25秒前
乐乐应助星亚唐采纳,获得10
25秒前
小蘑菇应助mengloo采纳,获得10
26秒前
asd关闭了asd文献求助
26秒前
27秒前
27秒前
27秒前
jin完成签到,获得积分10
27秒前
一区种子选手完成签到 ,获得积分10
27秒前
28秒前
Winna完成签到,获得积分10
31秒前
Akim应助平常的芝麻采纳,获得10
33秒前
37秒前
橙子完成签到,获得积分10
37秒前
123完成签到,获得积分10
37秒前
不会写诗完成签到 ,获得积分10
38秒前
39秒前
txxxx发布了新的文献求助10
42秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125633
求助须知:如何正确求助?哪些是违规求助? 2775924
关于积分的说明 7728426
捐赠科研通 2431401
什么是DOI,文献DOI怎么找? 1291999
科研通“疑难数据库(出版商)”最低求助积分说明 622301
版权声明 600376