Energy model for UAV communications: Experimental validation and model generalization

计算机科学 能量(信号处理) 能源消耗 一般化 启发式 模拟 功能(生物学) 无线 功率(物理) 加速度 实时计算 人工智能 电信 电气工程 统计 生物 物理 工程类 数学分析 进化生物学 经典力学 量子力学 数学
作者
Ning Gao,Yong Zeng,Jian Wang,Di Wu,Chaoyue Zhang,Qing Song,Jachen Qian,Shi Jin
出处
期刊:China Communications [Institute of Electrical and Electronics Engineers]
卷期号:18 (7): 253-264 被引量:26
标识
DOI:10.23919/jcc.2021.07.020
摘要

Wireless communication involving unmanned aerial vehicles (UAVs) is expected to play an important role in future wireless networks. However, different from conventional terrestrial communication systems, UAVs typically have rather limited onboard energy on one hand, and require additional flying energy consumption on the other hand. This renders energy-efficient UAV communication with smart energy expenditure of paramount importance. In this paper, via extensive flight experiments, we aim to firstly validate the recently derived theoretical energy model for rotary-wing UAVs, and then develop a general model for those complicated flight scenarios where rigorous theoretical model derivation is quite challenging, if not impossible. Specifically, we first investigate how UAV power consumption varies with its flying speed for the simplest straight-and-level flight. With about 12,000 valid power-speed data points collected, we first apply the model-based curve fitting to obtain the modelling parameters based on the theoretical closed-form energy model in the existing literature. In addition, in order to exclude the potential bias caused by the theoretical energy model, the obtained measurement data is also trained using a model-free deep neural network. It is found that the obtained curve from both methods can match quite well with the theoretical energy model. Next, we further extend the study to arbitrary 2-dimensional (2-D) flight, where, to our best knowledge, no rigorous theoretical derivation is available for the closed-form energy model as a function of its flying speed, direction, and acceleration. To fill the gap, we first propose a heuristic energy model for these more complicated cases, and then provide experimental validation based on the measurement results for circular level flight.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伈X完成签到 ,获得积分10
1秒前
2秒前
三千完成签到,获得积分10
2秒前
微笑的水桃完成签到 ,获得积分10
3秒前
Wen完成签到,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
alltoowell完成签到,获得积分0
5秒前
5秒前
5秒前
科研通AI5应助小豆医生采纳,获得10
5秒前
Sutera发布了新的文献求助10
6秒前
传奇3应助渴望者采纳,获得10
6秒前
6秒前
Jackson关注了科研通微信公众号
6秒前
颜云尔发布了新的文献求助10
7秒前
不圆完成签到,获得积分10
7秒前
树池完成签到,获得积分10
9秒前
害羞的书芹完成签到,获得积分10
10秒前
hyx发布了新的文献求助10
10秒前
杨振完成签到,获得积分10
10秒前
10秒前
英吉利25发布了新的文献求助30
10秒前
终梦发布了新的文献求助10
13秒前
Sutera完成签到,获得积分10
13秒前
西瓜妹完成签到,获得积分10
13秒前
tangsuyun发布了新的文献求助10
14秒前
研友_VZG7GZ应助Zhang采纳,获得10
14秒前
14秒前
空空完成签到 ,获得积分10
16秒前
16秒前
16秒前
你我山巅自相逢完成签到 ,获得积分10
17秒前
热心市民余先生完成签到,获得积分10
17秒前
wuyan204完成签到 ,获得积分10
17秒前
浮游应助加油努力采纳,获得10
18秒前
打打应助加油努力采纳,获得10
18秒前
打打应助加油努力采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913938
求助须知:如何正确求助?哪些是违规求助? 4188483
关于积分的说明 13008099
捐赠科研通 3957217
什么是DOI,文献DOI怎么找? 2169572
邀请新用户注册赠送积分活动 1187961
关于科研通互助平台的介绍 1095442