Clustering-Guided Particle Swarm Feature Selection Algorithm for High-Dimensional Imbalanced Data With Missing Values

缺少数据 聚类分析 粒子群优化 特征选择 初始化 计算机科学 兰德指数 数据挖掘 算法 模糊聚类 度量(数据仓库) Bhattacharyya距离 特征向量 人工智能 模式识别(心理学) 机器学习 程序设计语言
作者
Zhang Yon,Wang Yan-hu,Dunwei Gong,Xiaoyan Sun
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 616-630 被引量:61
标识
DOI:10.1109/tevc.2021.3106975
摘要

Feature selection (FS) in data with class imbalance or missing values has received much attention from researchers due to their universality in real-world applications. However, for data with both the two characteristics above, there is still a lack of the corresponding FS algorithm. Due to the complex coupling relationship between missing data and class imbalance, the need for better FS method becomes essential. To tackle high-dimensional imbalanced data with missing values, this article studies a new evolutionary FS method. First, an improved $F$ -measure based on filling risk (RF-measure) is defined to evaluate the influence of missing data on the performance of FS in the case of class imbalance. Following that taking the RF-measure as an objective function, a particle swarm optimization-based FS method with fuzzy clustering (PSOFS-FC) is proposed. Two new problem-specific operators or strategies, i.e., the swarm initialization strategy guided by fuzzy clustering and the local pruning operator based on feature importance, are developed to improve the performance of PSOFS-FC. Compared with state-of-the-art FS algorithms on several public datasets, experimental results show that PSOFS-FC can achieve excellent classification performance with relatively less running time, indicating its superiority on tackling high-dimensional imbalanced data with missing values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
刚刚
左右关注了科研通微信公众号
1秒前
wanci应助123采纳,获得10
2秒前
酷波er应助oooooooo采纳,获得30
2秒前
英姑应助iso采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
aaa北大街完成签到,获得积分10
2秒前
赘婿应助man采纳,获得30
2秒前
纯真大门发布了新的文献求助20
3秒前
深情安青应助YuanCheng采纳,获得10
3秒前
3秒前
4秒前
CC完成签到 ,获得积分10
4秒前
科研通AI6应助wzt采纳,获得10
4秒前
Erste完成签到 ,获得积分10
4秒前
冯伟娜完成签到,获得积分10
5秒前
5秒前
运气爆彭发布了新的文献求助10
5秒前
5秒前
6秒前
ddddd发布了新的文献求助10
6秒前
完犊子发布了新的文献求助10
6秒前
M二十四完成签到,获得积分10
7秒前
FashionBoy应助豆豆突采纳,获得10
7秒前
苏世完成签到,获得积分20
8秒前
永永远远完成签到,获得积分10
8秒前
zx发布了新的文献求助10
9秒前
9秒前
李健应助细心的岩采纳,获得30
9秒前
小石发布了新的文献求助10
9秒前
哈哈哈哈完成签到,获得积分10
9秒前
不要慌完成签到 ,获得积分10
9秒前
欢喜的火龙果完成签到,获得积分10
9秒前
Stella应助Meng采纳,获得10
10秒前
麦克雷发布了新的文献求助10
10秒前
10秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582496
求助须知:如何正确求助?哪些是违规求助? 4666557
关于积分的说明 14763364
捐赠科研通 4608754
什么是DOI,文献DOI怎么找? 2528816
邀请新用户注册赠送积分活动 1498082
关于科研通互助平台的介绍 1466764