亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clustering-Guided Particle Swarm Feature Selection Algorithm for High-Dimensional Imbalanced Data With Missing Values

缺少数据 聚类分析 粒子群优化 特征选择 初始化 计算机科学 兰德指数 数据挖掘 算法 模糊聚类 度量(数据仓库) Bhattacharyya距离 特征向量 人工智能 模式识别(心理学) 机器学习 程序设计语言
作者
Zhang Yon,Wang Yan-hu,Dunwei Gong,Xiaoyan Sun
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 616-630 被引量:61
标识
DOI:10.1109/tevc.2021.3106975
摘要

Feature selection (FS) in data with class imbalance or missing values has received much attention from researchers due to their universality in real-world applications. However, for data with both the two characteristics above, there is still a lack of the corresponding FS algorithm. Due to the complex coupling relationship between missing data and class imbalance, the need for better FS method becomes essential. To tackle high-dimensional imbalanced data with missing values, this article studies a new evolutionary FS method. First, an improved $F$ -measure based on filling risk (RF-measure) is defined to evaluate the influence of missing data on the performance of FS in the case of class imbalance. Following that taking the RF-measure as an objective function, a particle swarm optimization-based FS method with fuzzy clustering (PSOFS-FC) is proposed. Two new problem-specific operators or strategies, i.e., the swarm initialization strategy guided by fuzzy clustering and the local pruning operator based on feature importance, are developed to improve the performance of PSOFS-FC. Compared with state-of-the-art FS algorithms on several public datasets, experimental results show that PSOFS-FC can achieve excellent classification performance with relatively less running time, indicating its superiority on tackling high-dimensional imbalanced data with missing values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Edibletrio完成签到,获得积分20
5秒前
Edibletrio关注了科研通微信公众号
16秒前
book完成签到 ,获得积分10
17秒前
zwang688完成签到,获得积分10
24秒前
热情的c99发布了新的文献求助30
27秒前
30秒前
英俊的觅露完成签到,获得积分10
33秒前
33秒前
33秒前
35秒前
cowmoon发布了新的文献求助10
37秒前
明理瑾瑜发布了新的文献求助10
39秒前
小小的飞机完成签到,获得积分10
39秒前
王旭阳完成签到,获得积分10
42秒前
科研狗的春天完成签到 ,获得积分10
46秒前
酷波er应助明理瑾瑜采纳,获得10
48秒前
儒雅的十八完成签到,获得积分10
49秒前
52秒前
53秒前
明亮的老四完成签到 ,获得积分10
56秒前
李健的小迷弟应助Grinde采纳,获得10
1分钟前
吃了吃了完成签到,获得积分10
1分钟前
TEMPO发布了新的文献求助10
1分钟前
NexusExplorer应助霸气乐菱采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得30
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
合一海盗完成签到,获得积分10
1分钟前
Worenxian完成签到 ,获得积分10
1分钟前
汉堡包应助老鼠耗子采纳,获得10
1分钟前
1分钟前
Yu完成签到 ,获得积分10
1分钟前
赞zan完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
嘟嘟嘟嘟发布了新的文献求助10
1分钟前
Grinde发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714334
求助须知:如何正确求助?哪些是违规求助? 5222944
关于积分的说明 15273149
捐赠科研通 4865786
什么是DOI,文献DOI怎么找? 2612363
邀请新用户注册赠送积分活动 1562482
关于科研通互助平台的介绍 1519740