Clustering-Guided Particle Swarm Feature Selection Algorithm for High-Dimensional Imbalanced Data With Missing Values

缺少数据 聚类分析 粒子群优化 特征选择 初始化 计算机科学 兰德指数 数据挖掘 算法 模糊聚类 度量(数据仓库) Bhattacharyya距离 特征向量 人工智能 模式识别(心理学) 机器学习 程序设计语言
作者
Zhang Yon,Wang Yan-hu,Dunwei Gong,Xiaoyan Sun
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 616-630 被引量:61
标识
DOI:10.1109/tevc.2021.3106975
摘要

Feature selection (FS) in data with class imbalance or missing values has received much attention from researchers due to their universality in real-world applications. However, for data with both the two characteristics above, there is still a lack of the corresponding FS algorithm. Due to the complex coupling relationship between missing data and class imbalance, the need for better FS method becomes essential. To tackle high-dimensional imbalanced data with missing values, this article studies a new evolutionary FS method. First, an improved $F$ -measure based on filling risk (RF-measure) is defined to evaluate the influence of missing data on the performance of FS in the case of class imbalance. Following that taking the RF-measure as an objective function, a particle swarm optimization-based FS method with fuzzy clustering (PSOFS-FC) is proposed. Two new problem-specific operators or strategies, i.e., the swarm initialization strategy guided by fuzzy clustering and the local pruning operator based on feature importance, are developed to improve the performance of PSOFS-FC. Compared with state-of-the-art FS algorithms on several public datasets, experimental results show that PSOFS-FC can achieve excellent classification performance with relatively less running time, indicating its superiority on tackling high-dimensional imbalanced data with missing values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天行马发布了新的文献求助10
1秒前
oys关闭了oys文献求助
4秒前
Abi发布了新的文献求助10
4秒前
MoriZhang发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
rrrrrr发布了新的文献求助10
6秒前
丁丁发布了新的文献求助10
7秒前
7秒前
Yuxin完成签到,获得积分10
7秒前
明理的小蜜蜂完成签到 ,获得积分10
7秒前
科研通AI5应助alex采纳,获得30
7秒前
yuchen12a发布了新的文献求助10
7秒前
HC完成签到,获得积分10
8秒前
10秒前
听海发布了新的文献求助10
11秒前
安静凡旋发布了新的文献求助10
11秒前
顾矜应助辰月贰拾采纳,获得30
12秒前
14秒前
14秒前
14秒前
独徙完成签到 ,获得积分10
14秒前
15秒前
科研通AI5应助Metrix采纳,获得10
16秒前
16秒前
思源应助ZZZ采纳,获得10
17秒前
JamesPei应助幸福的初晴采纳,获得10
18秒前
寒月发布了新的文献求助10
18秒前
19秒前
19秒前
大圣完成签到,获得积分10
20秒前
听海发布了新的文献求助10
21秒前
英姑应助顾化蛹采纳,获得10
21秒前
zhang005on发布了新的文献求助10
21秒前
22秒前
无敌W完成签到,获得积分10
23秒前
文艺鞋子发布了新的文献求助10
24秒前
嘿嘿嘿发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565965
求助须知:如何正确求助?哪些是违规求助? 3138688
关于积分的说明 9428637
捐赠科研通 2839429
什么是DOI,文献DOI怎么找? 1560725
邀请新用户注册赠送积分活动 729866
科研通“疑难数据库(出版商)”最低求助积分说明 717679