Clustering-Guided Particle Swarm Feature Selection Algorithm for High-Dimensional Imbalanced Data With Missing Values

缺少数据 聚类分析 粒子群优化 特征选择 初始化 计算机科学 兰德指数 数据挖掘 算法 模糊聚类 度量(数据仓库) Bhattacharyya距离 特征向量 人工智能 模式识别(心理学) 机器学习 程序设计语言
作者
Zhang Yon,Wang Yan-hu,Dunwei Gong,Xiaoyan Sun
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 616-630 被引量:61
标识
DOI:10.1109/tevc.2021.3106975
摘要

Feature selection (FS) in data with class imbalance or missing values has received much attention from researchers due to their universality in real-world applications. However, for data with both the two characteristics above, there is still a lack of the corresponding FS algorithm. Due to the complex coupling relationship between missing data and class imbalance, the need for better FS method becomes essential. To tackle high-dimensional imbalanced data with missing values, this article studies a new evolutionary FS method. First, an improved $F$ -measure based on filling risk (RF-measure) is defined to evaluate the influence of missing data on the performance of FS in the case of class imbalance. Following that taking the RF-measure as an objective function, a particle swarm optimization-based FS method with fuzzy clustering (PSOFS-FC) is proposed. Two new problem-specific operators or strategies, i.e., the swarm initialization strategy guided by fuzzy clustering and the local pruning operator based on feature importance, are developed to improve the performance of PSOFS-FC. Compared with state-of-the-art FS algorithms on several public datasets, experimental results show that PSOFS-FC can achieve excellent classification performance with relatively less running time, indicating its superiority on tackling high-dimensional imbalanced data with missing values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲫鱼炖豆腐完成签到 ,获得积分10
1秒前
上官若男应助lzy采纳,获得10
1秒前
黑斑白马完成签到,获得积分10
2秒前
朴素友桃完成签到,获得积分10
3秒前
4秒前
4秒前
6秒前
7秒前
7秒前
充电宝应助ppat5012采纳,获得10
7秒前
8秒前
123发布了新的文献求助10
9秒前
Hello应助谷粱紫槐采纳,获得10
9秒前
Zeze完成签到,获得积分10
9秒前
机智猴完成签到,获得积分10
9秒前
9秒前
BowieHuang应助666采纳,获得10
10秒前
钱大大完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
阿黎发布了新的文献求助30
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
Maestro_S应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
Maestro_S应助科研通管家采纳,获得10
13秒前
13秒前
Maestro_S应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得30
13秒前
Owen应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465