化学
纤维素
衍生化
离子液体
热重分析
催化作用
有机化学
溶解
溶剂
串联
重量分析
绿色化学
化学工程
工程类
复合材料
高效液相色谱法
材料科学
作者
Jonas Wolfs,Roman Nickisch,Lisa Wanner,Michael A. R. Meier
摘要
New sustainable concepts have to be developed to overcome the increasing problems of resource availability. Cellulose derivatives with tunable material properties are promising biobased alternatives to existing petroleum-derived polymeric materials. However, the chemical modification of cellulose is very challenging, often requiring harsh conditions and complex solubilization or activation steps. More sustainable procedures toward novel cellulose derivatives are therefore of great interest. Herein, we describe a novel concept combining two approaches, (i) tandem catalysis and (ii) cellulose derivatization, by applying a single catalyst for three transformations in the DMSO/DBU/CO2 switchable solvent system. Cellulose was functionalized with four different biobased isothiocyanates, which were formed in situ via a catalytic sulfurization of isocyanides with elemental sulfur, preventing the exposure and handling of the isothiocyanates. The degree of substitution of the formed O-cellulose thiocarbamates was shown to be controllable in a range of 0.52-2.16 by varying the equivalents of the reactants. All obtained products were analyzed by ATR-IR, 1H, 13C, and 31P NMR spectroscopy as well as size exclusion chromatography, elemental analysis, differential scanning calorimetry, and thermal gravimetric analysis. Finally, the tandem reaction approach was shown to be beneficial in terms of efficiency as well as sustainability compared to a stepwise synthesis. Recycling ratios ranging from 79.1% to 95.6% were obtained for the employed components, resulting in an E-factor of 2.95 for the overall process.
科研通智能强力驱动
Strongly Powered by AbleSci AI