Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates

生物信息学 数量结构-活动关系 血脑屏障 支持向量机 分子描述符 磁导率 体内 化学 计算生物学 中枢神经系统 机器学习 计算机科学 生物 生物化学 神经科学 生物技术 基因
作者
Milica Radan,Teodora Djikić,Darija Obradović,Katarina Nikolić
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier]
卷期号:168: 106056-106056 被引量:29
标识
DOI:10.1016/j.ejps.2021.106056
摘要

Permeability assessment of small molecules through the blood-brain barrier (BBB) plays a significant role in the development of effective central nervous system (CNS) drug candidates. Since in vivo methods for BBB permeability estimation require a lot of time and resources, in silico and in vitro approaches are becoming increasingly popular nowadays for faster and more economical predictions in early phases of drug discovery. In this work, through application of in vitro parallel artificial membrane permeability assay (PAMPA-BBB) and in silico computational methods we aimed to examine the passive permeability of eighteen compounds, which affect serotonin and dopamine levels in the CNS. The data set was consisted of novel six human dopamine transporter (hDAT) substrates that were previously identified as the most promising lead compounds for further optimisation to achieve neuroprotective effect, twelve approved CNS drugs, and their related compounds. Firstly, PAMPA methods was used to experimentally determine effective BBB permeability (Pe) for all studied compounds and obtained results were further submitted for quantitative structure permeability relationship (QSPR) analysis. QSPR models were built by using three different statistical methods: stepwise multiple linear regression (MLR), partial least square (PLS), and support-vector machine (SVM), while their predictive capability was tested through internal and external validation. Obtained statistical parameters (MLR- R2pred=-0.10; PLS- R2pred=0.64, r2m=0.69, r/2m=0.44; SVM- R2pred=0.57, r2m=0.72, r/2m=0.55) indicated that the SVM model is superior over others. The most important molecular descriptors (H0p and SolvEMt_3D) were identified and used to propose structural modifications of the examined compounds in order to improve their BBB permeability. Moreover, steered molecular dynamics (SMD) simulation was employed to comprehensively investigate the permeability pathway of compounds through a lipid bilayer. Taken together, the created QSPR model could be used as a reliable and fast pre-screening tool for BBB permeability prediction of structurally related CNS compounds, while performed MD simulations provide a good foundation for future in silico examination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Reybor应助zhang采纳,获得50
刚刚
1秒前
瞿霞完成签到 ,获得积分10
1秒前
1秒前
2秒前
舒心魂幽发布了新的文献求助20
2秒前
小蘑菇应助大橘采纳,获得10
3秒前
悦悦发布了新的文献求助20
3秒前
axi发布了新的文献求助10
4秒前
南城雨落完成签到,获得积分10
4秒前
完美世界应助黄金天下采纳,获得10
4秒前
5秒前
研友_8DoPDZ完成签到,获得积分10
7秒前
想学习想得不行完成签到 ,获得积分10
8秒前
linmonz完成签到,获得积分10
9秒前
9秒前
BareBear应助热心火车采纳,获得10
10秒前
情怀应助热心火车采纳,获得10
10秒前
lalala发布了新的文献求助10
10秒前
须眉交白发布了新的文献求助20
10秒前
彳亍1117应助科研通管家采纳,获得10
10秒前
xy完成签到,获得积分10
10秒前
CipherSage应助科研通管家采纳,获得10
11秒前
彳亍1117应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得30
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
杳鸢应助科研通管家采纳,获得10
12秒前
李健应助Abner采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
无花果应助Docline采纳,获得10
12秒前
12秒前
大模型应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
CodeCraft应助孟韩采纳,获得10
12秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263951
求助须知:如何正确求助?哪些是违规求助? 2904227
关于积分的说明 8328755
捐赠科研通 2574315
什么是DOI,文献DOI怎么找? 1399020
科研通“疑难数据库(出版商)”最低求助积分说明 654403
邀请新用户注册赠送积分活动 633020