Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates

生物信息学 数量结构-活动关系 血脑屏障 支持向量机 分子描述符 磁导率 体内 化学 计算生物学 中枢神经系统 机器学习 计算机科学 生物 生物化学 神经科学 生物技术 基因
作者
Milica Radan,Teodora Djikić,Darija Obradović,Katarina Nikolić
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier]
卷期号:168: 106056-106056 被引量:29
标识
DOI:10.1016/j.ejps.2021.106056
摘要

Permeability assessment of small molecules through the blood-brain barrier (BBB) plays a significant role in the development of effective central nervous system (CNS) drug candidates. Since in vivo methods for BBB permeability estimation require a lot of time and resources, in silico and in vitro approaches are becoming increasingly popular nowadays for faster and more economical predictions in early phases of drug discovery. In this work, through application of in vitro parallel artificial membrane permeability assay (PAMPA-BBB) and in silico computational methods we aimed to examine the passive permeability of eighteen compounds, which affect serotonin and dopamine levels in the CNS. The data set was consisted of novel six human dopamine transporter (hDAT) substrates that were previously identified as the most promising lead compounds for further optimisation to achieve neuroprotective effect, twelve approved CNS drugs, and their related compounds. Firstly, PAMPA methods was used to experimentally determine effective BBB permeability (Pe) for all studied compounds and obtained results were further submitted for quantitative structure permeability relationship (QSPR) analysis. QSPR models were built by using three different statistical methods: stepwise multiple linear regression (MLR), partial least square (PLS), and support-vector machine (SVM), while their predictive capability was tested through internal and external validation. Obtained statistical parameters (MLR- R2pred=-0.10; PLS- R2pred=0.64, r2m=0.69, r/2m=0.44; SVM- R2pred=0.57, r2m=0.72, r/2m=0.55) indicated that the SVM model is superior over others. The most important molecular descriptors (H0p and SolvEMt_3D) were identified and used to propose structural modifications of the examined compounds in order to improve their BBB permeability. Moreover, steered molecular dynamics (SMD) simulation was employed to comprehensively investigate the permeability pathway of compounds through a lipid bilayer. Taken together, the created QSPR model could be used as a reliable and fast pre-screening tool for BBB permeability prediction of structurally related CNS compounds, while performed MD simulations provide a good foundation for future in silico examination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清风发布了新的文献求助10
1秒前
leo7完成签到,获得积分10
1秒前
既白完成签到,获得积分10
1秒前
candy发布了新的文献求助10
1秒前
铃兰发布了新的文献求助10
1秒前
anlin完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助30
2秒前
111关闭了111文献求助
2秒前
blank12发布了新的文献求助10
2秒前
2秒前
3秒前
HOME发布了新的文献求助10
3秒前
4秒前
大鱼完成签到 ,获得积分10
4秒前
4秒前
大模型应助xx采纳,获得10
4秒前
翟三日发布了新的文献求助10
4秒前
4秒前
5秒前
852应助zo采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
饶天源发布了新的文献求助10
6秒前
健忘雨发布了新的文献求助20
7秒前
peiruili发布了新的文献求助10
7秒前
7秒前
zl987发布了新的文献求助10
7秒前
8秒前
8秒前
三心草发布了新的文献求助10
10秒前
雪sung完成签到,获得积分10
10秒前
10秒前
momo发布了新的文献求助10
10秒前
如是之人完成签到,获得积分10
11秒前
DDD发布了新的文献求助10
11秒前
blank12完成签到,获得积分10
12秒前
1111完成签到 ,获得积分10
12秒前
12秒前
12秒前
含蓄冰夏发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927