Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges

超参数 超参数优化 机器学习 计算机科学 贝叶斯优化 人工智能 集合(抽象数据类型) 算法 透视图(图形) 支持向量机 程序设计语言
作者
Bernd Bischl,Martin Binder,Michel Lang,Tobias Pielok,Jakob Richter,Stefan Coors,Janek Thomas,Theresa Ullmann,Marc Becker,Anne‐Laure Boulesteix,Difan Deng,Marius Lindauer
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:13 (2) 被引量:636
标识
DOI:10.1002/widm.1484
摘要

Abstract Most machine learning algorithms are configured by a set of hyperparameters whose values must be carefully chosen and which often considerably impact performance. To avoid a time‐consuming and irreproducible manual process of trial‐and‐error to find well‐performing hyperparameter configurations, various automatic hyperparameter optimization (HPO) methods—for example, based on resampling error estimation for supervised machine learning—can be employed. After introducing HPO from a general perspective, this paper reviews important HPO methods, from simple techniques such as grid or random search to more advanced methods like evolution strategies, Bayesian optimization, Hyperband, and racing. This work gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with machine learning pipelines, runtime improvements, and parallelization. This article is categorized under: Algorithmic Development > Statistics Technologies > Machine Learning Technologies > Prediction
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zero完成签到,获得积分10
刚刚
刚刚
唐艺发布了新的文献求助10
2秒前
Jolin完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
王壕发布了新的文献求助10
5秒前
打打应助唐小颖采纳,获得10
6秒前
Alivelean完成签到,获得积分20
6秒前
wu发布了新的文献求助10
7秒前
10秒前
黄则已发布了新的文献求助10
11秒前
CCCC完成签到,获得积分10
11秒前
ssss完成签到,获得积分10
11秒前
M_发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
坚强的小丸子完成签到 ,获得积分20
13秒前
14秒前
XIANGYI完成签到 ,获得积分10
14秒前
BowieHuang应助fafafa采纳,获得10
15秒前
直率曼荷完成签到,获得积分10
15秒前
懒得可爱完成签到,获得积分10
16秒前
出其东门发布了新的文献求助10
16秒前
16秒前
新xin发布了新的文献求助10
17秒前
刘鑫如发布了新的文献求助10
18秒前
18秒前
大模型应助kk采纳,获得10
19秒前
善学以致用应助mrz采纳,获得20
20秒前
大胆听莲完成签到 ,获得积分10
21秒前
11111完成签到,获得积分10
22秒前
22秒前
充电宝应助luo采纳,获得10
22秒前
帅气的小翟完成签到,获得积分10
24秒前
闪闪的乐蕊完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
25秒前
1774181866发布了新的文献求助10
26秒前
wjy321发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713458
求助须知:如何正确求助?哪些是违规求助? 5215299
关于积分的说明 15270846
捐赠科研通 4865190
什么是DOI,文献DOI怎么找? 2611932
邀请新用户注册赠送积分活动 1562095
关于科研通互助平台的介绍 1519329