医学
神经母细胞瘤RAS病毒癌基因同源物
黑色素瘤
免疫疗法
癌症研究
曲美替尼
肿瘤科
靶向治疗
MAPK/ERK通路
威罗菲尼
内科学
癌症
免疫学
克拉斯
转移性黑色素瘤
信号转导
结直肠癌
化学
生物化学
作者
Tijana Randic,Ines Kozar,Christiane Margue,Jochen Utikal,Stephanie Kreis
标识
DOI:10.1016/j.ctrv.2021.102238
摘要
Genetic alterations affecting RAS proteins are commonly found in human cancers. Roughly a fourth of melanoma patients carry activating NRAS mutations, rendering this malignancy particularly challenging to treat. Although the development of targeted as well as immunotherapies led to a substantial improvement in the overall survival of non-NRASmut melanoma patients (e.g. BRAFmut), patients with NRASmut melanomas have an overall poorer prognosis due to the high aggressiveness of RASmut tumors, lack of efficient targeted therapies or rapidly emerging resistance to existing treatments. Understanding how NRAS-driven melanomas develop therapy resistance by maintaining cell cycle progression and survival is crucial to develop more effective and specific treatments for this group of melanoma patients. In this review, we provide an updated summary of currently available therapeutic options for NRASmut melanoma patients with a focus on combined inhibition of MAPK signaling and CDK4/6-driven cell cycle progression and mechanisms of the inevitably developing resistance to these treatments. We conclude with an outlook on the most promising novel therapeutic approaches for melanoma patients with constitutively active NRAS.Statement of significanceAn estimated 75000 patients are affected by NRASmut melanoma each year and these patients still have a shorter progression-free survival than BRAFmut melanomas. Both intrinsic and acquired resistance occur in NRAS-driven melanomas once treated with single or combined targeted therapies involving MAPK and CDK4/6 inhibitors and/or checkpoint inhibiting immunotherapy. Oncolytic viruses, mRNA-based vaccinations, as well as targeted triple-agent therapy are promising alternatives, which could soon contribute to improved progression-free survival of the NRASmut melanoma patient group.
科研通智能强力驱动
Strongly Powered by AbleSci AI