已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An energy‐efficiency evaluation method for high‐sulfur natural gas purification system using artificial neural networks and particle swarm optimization

能源消耗 粒子群优化 天然气 工艺工程 水准点(测量) 人工神经网络 高效能源利用 过程(计算) 工程类 计算机科学 人工智能 废物管理 机器学习 操作系统 地理 电气工程 大地测量学
作者
Min Qiu,Zhongli Ji,Limin Ma
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (3): 3213-3232 被引量:5
标识
DOI:10.1002/er.7376
摘要

International Journal of Energy ResearchVolume 46, Issue 3 p. 3213-3232 RESEARCH ARTICLE An energy-efficiency evaluation method for high-sulfur natural gas purification system using artificial neural networks and particle swarm optimization Min Qiu, Min Qiu orcid.org/0000-0002-9668-1757 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of PetroleumSearch for more papers by this authorZhongli Ji, Zhongli Ji Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of PetroleumSearch for more papers by this authorLimin Ma, Corresponding Author Limin Ma [email protected] orcid.org/0000-0002-7468-8173 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum Correspondence Limin Ma, Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China. Email: [email protected]Search for more papers by this author Min Qiu, Min Qiu orcid.org/0000-0002-9668-1757 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of PetroleumSearch for more papers by this authorZhongli Ji, Zhongli Ji Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of PetroleumSearch for more papers by this authorLimin Ma, Corresponding Author Limin Ma [email protected] orcid.org/0000-0002-7468-8173 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum Correspondence Limin Ma, Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China. Email: [email protected]Search for more papers by this author First published: 12 October 2021 https://doi.org/10.1002/er.7376 Funding information: National Science and Technology Major Project of the Ministry of Science and Technology of China, Grant/Award Number: 2016ZX05017-004 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Summary Natural gas purification, especially with high sulfur content, is an energy-intensive chemical production process, for which there are considerable differences in the energy consumption patterns of different purification plants. Therefore, these purification plants are required to establish a universal evaluation standard for energy consumption performance. This article proposed a novel approach to evaluate the energy efficiency of the natural gas purification process from the systems engineering perspective. An evaluation system is established for the hierarchical indicators of energy consumption using this technique providing the detailed definition of evaluation indicators for process, unit, and device. At the same time, a technical route is proposed for intelligent algorithm optimization and artificial neural network modeling based on historical operation data of the plant to discover the energy consumption benchmarks under various raw gas flow rates. Using this proposed method, the energy consumption efficiency can be evaluated while analyzing the energy-savings potential of these natural gas purification plants with various process types or raw gas characteristics. Furthermore, the model based on historical operating data can objectively and truly reflect the plant's energy consumption features; therefore, the plant's energy consumption can be decreased to benchmark by adjusting the corresponding operation parameters. Ultimately, the computational process of the energy consumption benchmark is described thoroughly for a high-sulfur natural gas purification plant. CONFLICT OF INTEREST We declare that there is no commercial or associative interest conflicting the interest in connection with the work submitted. Open Research DATA AVAILABILITY STATEMENT Research data are not shared. Volume46, Issue310 March 2022Pages 3213-3232 RelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
Venovenom发布了新的文献求助30
3秒前
情怀应助tt采纳,获得10
4秒前
Akim应助坚强枫采纳,获得10
5秒前
5秒前
8秒前
鼠鼠完成签到 ,获得积分10
10秒前
onlyan发布了新的文献求助20
11秒前
mpenny77发布了新的文献求助30
11秒前
十四发布了新的文献求助10
12秒前
14秒前
脑洞疼应助yaling采纳,获得10
17秒前
17秒前
18秒前
mpenny77完成签到,获得积分10
20秒前
多肉葡萄完成签到 ,获得积分10
22秒前
SciGPT应助大面包采纳,获得10
23秒前
24秒前
cc发布了新的文献求助10
24秒前
Rondab应助十四采纳,获得10
28秒前
怕孤独的访云完成签到 ,获得积分10
28秒前
SYLH应助晶晶采纳,获得10
30秒前
kokoko完成签到,获得积分10
30秒前
30秒前
夙夙发布了新的文献求助10
32秒前
32秒前
大面包发布了新的文献求助10
35秒前
37秒前
Sophia发布了新的文献求助10
38秒前
大头完成签到,获得积分0
41秒前
onlyan完成签到,获得积分10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989857
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255679
捐赠科研通 3270758
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882195
科研通“疑难数据库(出版商)”最低求助积分说明 809208