An energy‐efficiency evaluation method for high‐sulfur natural gas purification system using artificial neural networks and particle swarm optimization

能源消耗 粒子群优化 天然气 工艺工程 水准点(测量) 人工神经网络 高效能源利用 过程(计算) 工程类 计算机科学 人工智能 废物管理 机器学习 操作系统 地理 电气工程 大地测量学
作者
Min Qiu,Zhongli Ji,Limin Ma
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (3): 3213-3232 被引量:5
标识
DOI:10.1002/er.7376
摘要

International Journal of Energy ResearchVolume 46, Issue 3 p. 3213-3232 RESEARCH ARTICLE An energy-efficiency evaluation method for high-sulfur natural gas purification system using artificial neural networks and particle swarm optimization Min Qiu, Min Qiu orcid.org/0000-0002-9668-1757 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of PetroleumSearch for more papers by this authorZhongli Ji, Zhongli Ji Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of PetroleumSearch for more papers by this authorLimin Ma, Corresponding Author Limin Ma [email protected] orcid.org/0000-0002-7468-8173 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum Correspondence Limin Ma, Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China. Email: [email protected]Search for more papers by this author Min Qiu, Min Qiu orcid.org/0000-0002-9668-1757 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of PetroleumSearch for more papers by this authorZhongli Ji, Zhongli Ji Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of PetroleumSearch for more papers by this authorLimin Ma, Corresponding Author Limin Ma [email protected] orcid.org/0000-0002-7468-8173 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum Correspondence Limin Ma, Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China. Email: [email protected]Search for more papers by this author First published: 12 October 2021 https://doi.org/10.1002/er.7376 Funding information: National Science and Technology Major Project of the Ministry of Science and Technology of China, Grant/Award Number: 2016ZX05017-004 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Summary Natural gas purification, especially with high sulfur content, is an energy-intensive chemical production process, for which there are considerable differences in the energy consumption patterns of different purification plants. Therefore, these purification plants are required to establish a universal evaluation standard for energy consumption performance. This article proposed a novel approach to evaluate the energy efficiency of the natural gas purification process from the systems engineering perspective. An evaluation system is established for the hierarchical indicators of energy consumption using this technique providing the detailed definition of evaluation indicators for process, unit, and device. At the same time, a technical route is proposed for intelligent algorithm optimization and artificial neural network modeling based on historical operation data of the plant to discover the energy consumption benchmarks under various raw gas flow rates. Using this proposed method, the energy consumption efficiency can be evaluated while analyzing the energy-savings potential of these natural gas purification plants with various process types or raw gas characteristics. Furthermore, the model based on historical operating data can objectively and truly reflect the plant's energy consumption features; therefore, the plant's energy consumption can be decreased to benchmark by adjusting the corresponding operation parameters. Ultimately, the computational process of the energy consumption benchmark is described thoroughly for a high-sulfur natural gas purification plant. CONFLICT OF INTEREST We declare that there is no commercial or associative interest conflicting the interest in connection with the work submitted. Open Research DATA AVAILABILITY STATEMENT Research data are not shared. Volume46, Issue310 March 2022Pages 3213-3232 RelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
一位名圆完成签到,获得积分10
刚刚
1秒前
1秒前
Owen应助青青采纳,获得10
1秒前
搜集达人应助土豆淀粉采纳,获得10
1秒前
2秒前
科研通AI2S应助小蚊子采纳,获得10
2秒前
2秒前
上官若男应助王哪跑12采纳,获得10
2秒前
CodeCraft应助yangcong采纳,获得10
2秒前
gwentea发布了新的文献求助10
3秒前
3秒前
暖暖发布了新的文献求助10
3秒前
Jessekwok完成签到,获得积分10
4秒前
4秒前
4秒前
赵永斌发布了新的文献求助10
4秒前
lily000完成签到,获得积分10
4秒前
脑洞疼应助wyx采纳,获得10
4秒前
毛绒绒窝铺完成签到,获得积分10
5秒前
kk完成签到,获得积分10
5秒前
profit完成签到 ,获得积分10
5秒前
科研通AI5应助糊涂涂采纳,获得30
5秒前
小二郎应助curlycai采纳,获得10
5秒前
潇洒毒娘发布了新的文献求助10
5秒前
爆米花应助现实的问玉采纳,获得10
6秒前
DT发布了新的文献求助10
6秒前
6秒前
gwentea完成签到,获得积分20
7秒前
pwy发布了新的文献求助10
7秒前
Owen应助阿鸢采纳,获得20
7秒前
玛卡巴卡发布了新的文献求助10
8秒前
123131发布了新的文献求助10
8秒前
略微妙蛙完成签到,获得积分10
8秒前
出轨的妻子完成签到 ,获得积分10
8秒前
9秒前
10秒前
情怀应助自由的白玉采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403