An energy‐efficiency evaluation method for high‐sulfur natural gas purification system using artificial neural networks and particle swarm optimization

能源消耗 粒子群优化 天然气 工艺工程 水准点(测量) 人工神经网络 高效能源利用 过程(计算) 工程类 计算机科学 人工智能 废物管理 机器学习 操作系统 地理 电气工程 大地测量学
作者
Min Qiu,Zhongli Ji,Limin Ma
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (3): 3213-3232 被引量:5
标识
DOI:10.1002/er.7376
摘要

International Journal of Energy ResearchVolume 46, Issue 3 p. 3213-3232 RESEARCH ARTICLE An energy-efficiency evaluation method for high-sulfur natural gas purification system using artificial neural networks and particle swarm optimization Min Qiu, Min Qiu orcid.org/0000-0002-9668-1757 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of PetroleumSearch for more papers by this authorZhongli Ji, Zhongli Ji Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of PetroleumSearch for more papers by this authorLimin Ma, Corresponding Author Limin Ma [email protected] orcid.org/0000-0002-7468-8173 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum Correspondence Limin Ma, Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China. Email: [email protected]Search for more papers by this author Min Qiu, Min Qiu orcid.org/0000-0002-9668-1757 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of PetroleumSearch for more papers by this authorZhongli Ji, Zhongli Ji Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of PetroleumSearch for more papers by this authorLimin Ma, Corresponding Author Limin Ma [email protected] orcid.org/0000-0002-7468-8173 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum Correspondence Limin Ma, Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China. Email: [email protected]Search for more papers by this author First published: 12 October 2021 https://doi.org/10.1002/er.7376 Funding information: National Science and Technology Major Project of the Ministry of Science and Technology of China, Grant/Award Number: 2016ZX05017-004 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Summary Natural gas purification, especially with high sulfur content, is an energy-intensive chemical production process, for which there are considerable differences in the energy consumption patterns of different purification plants. Therefore, these purification plants are required to establish a universal evaluation standard for energy consumption performance. This article proposed a novel approach to evaluate the energy efficiency of the natural gas purification process from the systems engineering perspective. An evaluation system is established for the hierarchical indicators of energy consumption using this technique providing the detailed definition of evaluation indicators for process, unit, and device. At the same time, a technical route is proposed for intelligent algorithm optimization and artificial neural network modeling based on historical operation data of the plant to discover the energy consumption benchmarks under various raw gas flow rates. Using this proposed method, the energy consumption efficiency can be evaluated while analyzing the energy-savings potential of these natural gas purification plants with various process types or raw gas characteristics. Furthermore, the model based on historical operating data can objectively and truly reflect the plant's energy consumption features; therefore, the plant's energy consumption can be decreased to benchmark by adjusting the corresponding operation parameters. Ultimately, the computational process of the energy consumption benchmark is described thoroughly for a high-sulfur natural gas purification plant. CONFLICT OF INTEREST We declare that there is no commercial or associative interest conflicting the interest in connection with the work submitted. Open Research DATA AVAILABILITY STATEMENT Research data are not shared. Volume46, Issue310 March 2022Pages 3213-3232 RelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu发布了新的文献求助10
刚刚
Lucas应助vivienwant采纳,获得10
2秒前
kise关注了科研通微信公众号
2秒前
haowu发布了新的文献求助10
3秒前
迷人素发布了新的文献求助10
5秒前
橙子完成签到,获得积分10
5秒前
6秒前
8秒前
8秒前
wxy完成签到,获得积分10
11秒前
11秒前
13秒前
笑傲发布了新的文献求助10
14秒前
丘比特应助迷人素采纳,获得10
15秒前
15秒前
16秒前
16秒前
18秒前
Lee2000发布了新的文献求助10
19秒前
zou发布了新的文献求助10
19秒前
徐若楠发布了新的文献求助10
20秒前
22秒前
lin完成签到,获得积分10
22秒前
Elsa完成签到,获得积分10
22秒前
24秒前
26秒前
迷人素完成签到,获得积分10
26秒前
能干世界发布了新的文献求助10
26秒前
yhyhyhyh发布了新的文献求助10
27秒前
笑傲完成签到,获得积分20
27秒前
CodeCraft应助徐若楠采纳,获得10
28秒前
麦兜完成签到,获得积分10
28秒前
shawn发布了新的文献求助30
30秒前
31秒前
微光完成签到,获得积分10
32秒前
Lee2000完成签到,获得积分20
36秒前
想人陪的采蓝完成签到 ,获得积分20
36秒前
iCloud完成签到,获得积分10
37秒前
37秒前
过过过发布了新的文献求助10
37秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906837
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228