Privacy-preserving Decentralized Federated Deep Learning

计算机科学 上传 联合学习 块链 深度学习 计算机安全 加密 水准点(测量) 激励 信息隐私 方案(数学) 同态加密 人工智能 机器学习 万维网 数学分析 数学 大地测量学 经济 微观经济学 地理
作者
Xudong Zhu,Hui Li
标识
DOI:10.1145/3472634.3472642
摘要

Deep learning has achieved the high-accuracy of state-of-the-art algorithms in long-standing AI tasks. Due to the obvious privacy issues of deep learning, Google proposes Federal Deep Learning (FDL), in which distributed participants only upload local gradients and and a centralized server updates parameters based on the collected gradients. But few users are willing to participate in federated learning due to the lack of contribution evaluation and reward mechanisms. So a decentralized federated deep learning, called DFDL, has been proposed by introducing blockchain to form an effective incentive mechanism for participants. However, DFDL still faces serious privacy issues as blockchain does not guarantee the privacy of training data and model. In this paper, in order to address the aforementioned issues, we propose a new Privacy-preserving DFDL scheme, called PDFDL. With PDFDL, parties can securely learn a global model with their local gradients in the assistance of blockchain, and the parties' sensitive data and the global model are well protected. Specifically, with a secure multi-party aggregation computing, all local gradients are encrypted by their owners before being sent to the smart contract, and can be directly aggregated without decryption. Detailed security analysis shows that PDFDL can resist various known security threats. Moreover, we give an implementation prototype by integrating deep learning module with a Blockchain development platform (Ethereum V1.6.4). We demonstrate the encryption performance and the training accuracy of our PDFDL on benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
森禾完成签到 ,获得积分10
3秒前
3秒前
上官若男应助曾经的帅哥采纳,获得10
6秒前
陈星翰完成签到,获得积分10
6秒前
stumm发布了新的文献求助10
8秒前
Chief完成签到,获得积分0
9秒前
9秒前
10秒前
奋斗成风发布了新的文献求助10
12秒前
浮游应助Kevin采纳,获得10
18秒前
浮游应助扬灵兮采纳,获得10
19秒前
安详的冷安完成签到,获得积分10
20秒前
烟花应助keke采纳,获得10
21秒前
还行吧完成签到 ,获得积分10
22秒前
俏皮的安萱完成签到 ,获得积分10
23秒前
材袅完成签到,获得积分10
24秒前
27秒前
盐焗鱼丸完成签到 ,获得积分10
28秒前
29秒前
29秒前
29秒前
30秒前
keke完成签到,获得积分10
32秒前
TNU发布了新的文献求助10
32秒前
33秒前
Bob发布了新的文献求助10
33秒前
36秒前
hilbet发布了新的文献求助10
38秒前
李琦完成签到 ,获得积分10
39秒前
auggy发布了新的文献求助10
39秒前
Bob完成签到,获得积分10
39秒前
41秒前
淡然葶完成签到 ,获得积分10
42秒前
43秒前
笨笨念文完成签到 ,获得积分10
46秒前
48秒前
55秒前
Cik完成签到,获得积分10
55秒前
Xjx6519发布了新的文献求助10
58秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557614
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668844
捐赠科研通 4584126
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523