Privacy-preserving Decentralized Federated Deep Learning

计算机科学 上传 联合学习 块链 深度学习 计算机安全 加密 水准点(测量) 激励 信息隐私 方案(数学) 同态加密 人工智能 机器学习 万维网 数学分析 数学 大地测量学 经济 微观经济学 地理
作者
Xudong Zhu,Hui Li
标识
DOI:10.1145/3472634.3472642
摘要

Deep learning has achieved the high-accuracy of state-of-the-art algorithms in long-standing AI tasks. Due to the obvious privacy issues of deep learning, Google proposes Federal Deep Learning (FDL), in which distributed participants only upload local gradients and and a centralized server updates parameters based on the collected gradients. But few users are willing to participate in federated learning due to the lack of contribution evaluation and reward mechanisms. So a decentralized federated deep learning, called DFDL, has been proposed by introducing blockchain to form an effective incentive mechanism for participants. However, DFDL still faces serious privacy issues as blockchain does not guarantee the privacy of training data and model. In this paper, in order to address the aforementioned issues, we propose a new Privacy-preserving DFDL scheme, called PDFDL. With PDFDL, parties can securely learn a global model with their local gradients in the assistance of blockchain, and the parties' sensitive data and the global model are well protected. Specifically, with a secure multi-party aggregation computing, all local gradients are encrypted by their owners before being sent to the smart contract, and can be directly aggregated without decryption. Detailed security analysis shows that PDFDL can resist various known security threats. Moreover, we give an implementation prototype by integrating deep learning module with a Blockchain development platform (Ethereum V1.6.4). We demonstrate the encryption performance and the training accuracy of our PDFDL on benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熏熏完成签到 ,获得积分10
刚刚
2秒前
星辰大海应助wuqs采纳,获得10
3秒前
111完成签到 ,获得积分10
3秒前
机智的青柏完成签到 ,获得积分10
4秒前
桐桐应助Jim luo采纳,获得10
4秒前
BB完成签到,获得积分20
5秒前
坚强的缘分完成签到,获得积分10
6秒前
浮游应助wjw采纳,获得10
7秒前
浮游应助wjw采纳,获得10
7秒前
浮游应助wjw采纳,获得10
7秒前
Lee完成签到,获得积分10
8秒前
纯真的醉柳完成签到,获得积分10
8秒前
十五完成签到,获得积分10
10秒前
李燕伟完成签到 ,获得积分10
10秒前
11秒前
苏以禾完成签到 ,获得积分10
13秒前
13秒前
冷冷完成签到 ,获得积分10
14秒前
怀南完成签到 ,获得积分10
15秒前
Jim luo发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
19秒前
wjw完成签到,获得积分10
19秒前
乌云乌云快走开完成签到,获得积分10
20秒前
1111chen完成签到 ,获得积分10
20秒前
蓝韵完成签到,获得积分10
21秒前
matt完成签到,获得积分10
22秒前
舒克完成签到,获得积分10
24秒前
24秒前
Jim luo完成签到,获得积分10
24秒前
26秒前
高大以南完成签到,获得积分10
26秒前
hbj完成签到,获得积分10
26秒前
丽丽完成签到 ,获得积分10
29秒前
忧郁的猪鼻子完成签到 ,获得积分10
29秒前
明亮谷波发布了新的文献求助10
30秒前
qiqi完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
32秒前
小杭76完成签到,获得积分0
34秒前
35秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590