Privacy-preserving Decentralized Federated Deep Learning

计算机科学 上传 联合学习 块链 深度学习 计算机安全 加密 水准点(测量) 激励 信息隐私 方案(数学) 同态加密 人工智能 机器学习 万维网 数学分析 数学 大地测量学 经济 微观经济学 地理
作者
Xudong Zhu,Hui Li
标识
DOI:10.1145/3472634.3472642
摘要

Deep learning has achieved the high-accuracy of state-of-the-art algorithms in long-standing AI tasks. Due to the obvious privacy issues of deep learning, Google proposes Federal Deep Learning (FDL), in which distributed participants only upload local gradients and and a centralized server updates parameters based on the collected gradients. But few users are willing to participate in federated learning due to the lack of contribution evaluation and reward mechanisms. So a decentralized federated deep learning, called DFDL, has been proposed by introducing blockchain to form an effective incentive mechanism for participants. However, DFDL still faces serious privacy issues as blockchain does not guarantee the privacy of training data and model. In this paper, in order to address the aforementioned issues, we propose a new Privacy-preserving DFDL scheme, called PDFDL. With PDFDL, parties can securely learn a global model with their local gradients in the assistance of blockchain, and the parties' sensitive data and the global model are well protected. Specifically, with a secure multi-party aggregation computing, all local gradients are encrypted by their owners before being sent to the smart contract, and can be directly aggregated without decryption. Detailed security analysis shows that PDFDL can resist various known security threats. Moreover, we give an implementation prototype by integrating deep learning module with a Blockchain development platform (Ethereum V1.6.4). We demonstrate the encryption performance and the training accuracy of our PDFDL on benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
詹慧子发布了新的文献求助10
1秒前
喵脆角完成签到 ,获得积分20
1秒前
万能图书馆应助赵晶晶采纳,获得10
1秒前
共享精神应助www采纳,获得10
2秒前
考博圣体发布了新的文献求助10
3秒前
3秒前
SciGPT应助老唐采纳,获得10
5秒前
5秒前
天天快乐应助孢子采纳,获得10
5秒前
6秒前
6秒前
7秒前
8秒前
wjy321发布了新的文献求助10
8秒前
9秒前
ShengzhangLiu完成签到,获得积分10
10秒前
阿池完成签到,获得积分10
11秒前
可靠的芒果完成签到,获得积分10
11秒前
11秒前
12秒前
受戒发布了新的文献求助10
12秒前
12秒前
九天完成签到 ,获得积分0
12秒前
DemonH完成签到,获得积分20
13秒前
Orange应助云水怒采纳,获得10
13秒前
14秒前
雪茶完成签到,获得积分10
14秒前
云梦江海完成签到,获得积分10
14秒前
15秒前
timeless发布了新的文献求助10
15秒前
幸福遥发布了新的文献求助10
15秒前
15秒前
17秒前
feifeifei完成签到,获得积分20
17秒前
17秒前
17秒前
ahau_zhang发布了新的文献求助10
17秒前
18秒前
樱桃肉丸子完成签到,获得积分10
19秒前
meng发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513