Privacy-preserving Decentralized Federated Deep Learning

计算机科学 上传 联合学习 块链 深度学习 计算机安全 加密 水准点(测量) 激励 信息隐私 方案(数学) 同态加密 人工智能 机器学习 万维网 数学分析 数学 大地测量学 经济 微观经济学 地理
作者
Xudong Zhu,Hui Li
标识
DOI:10.1145/3472634.3472642
摘要

Deep learning has achieved the high-accuracy of state-of-the-art algorithms in long-standing AI tasks. Due to the obvious privacy issues of deep learning, Google proposes Federal Deep Learning (FDL), in which distributed participants only upload local gradients and and a centralized server updates parameters based on the collected gradients. But few users are willing to participate in federated learning due to the lack of contribution evaluation and reward mechanisms. So a decentralized federated deep learning, called DFDL, has been proposed by introducing blockchain to form an effective incentive mechanism for participants. However, DFDL still faces serious privacy issues as blockchain does not guarantee the privacy of training data and model. In this paper, in order to address the aforementioned issues, we propose a new Privacy-preserving DFDL scheme, called PDFDL. With PDFDL, parties can securely learn a global model with their local gradients in the assistance of blockchain, and the parties' sensitive data and the global model are well protected. Specifically, with a secure multi-party aggregation computing, all local gradients are encrypted by their owners before being sent to the smart contract, and can be directly aggregated without decryption. Detailed security analysis shows that PDFDL can resist various known security threats. Moreover, we give an implementation prototype by integrating deep learning module with a Blockchain development platform (Ethereum V1.6.4). We demonstrate the encryption performance and the training accuracy of our PDFDL on benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐发布了新的文献求助30
刚刚
CodeCraft应助一杯冰美式采纳,获得10
刚刚
黄晃晃完成签到,获得积分10
刚刚
刚刚
童小肥发布了新的文献求助10
1秒前
科研通AI6应助冰旋采纳,获得10
1秒前
1秒前
谢米完成签到,获得积分10
1秒前
1秒前
1秒前
追人的风筝完成签到,获得积分10
2秒前
liuziyu发布了新的文献求助10
2秒前
2秒前
Dprisk完成签到,获得积分10
2秒前
2秒前
2秒前
SciGPT应助Sunny采纳,获得10
2秒前
2秒前
3秒前
美女完成签到,获得积分10
3秒前
SciGPT应助iW采纳,获得10
3秒前
落后满天发布了新的文献求助10
3秒前
3秒前
小诗发布了新的文献求助10
4秒前
狂野念双完成签到,获得积分20
4秒前
Jhy369给Jhy369的求助进行了留言
4秒前
hl发布了新的文献求助10
4秒前
万能图书馆应助汤飞柏采纳,获得10
4秒前
4秒前
4秒前
小诗泡泡发布了新的文献求助30
5秒前
陈chen发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
zzz发布了新的文献求助20
5秒前
情怀应助科研通管家采纳,获得10
5秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582358
求助须知:如何正确求助?哪些是违规求助? 4666421
关于积分的说明 14762778
捐赠科研通 4608475
什么是DOI,文献DOI怎么找? 2528699
邀请新用户注册赠送积分活动 1498050
关于科研通互助平台的介绍 1466736