Privacy-preserving Decentralized Federated Deep Learning

计算机科学 上传 联合学习 块链 深度学习 计算机安全 加密 水准点(测量) 激励 信息隐私 方案(数学) 同态加密 人工智能 机器学习 万维网 数学分析 数学 大地测量学 经济 微观经济学 地理
作者
Xudong Zhu,Hui Li
标识
DOI:10.1145/3472634.3472642
摘要

Deep learning has achieved the high-accuracy of state-of-the-art algorithms in long-standing AI tasks. Due to the obvious privacy issues of deep learning, Google proposes Federal Deep Learning (FDL), in which distributed participants only upload local gradients and and a centralized server updates parameters based on the collected gradients. But few users are willing to participate in federated learning due to the lack of contribution evaluation and reward mechanisms. So a decentralized federated deep learning, called DFDL, has been proposed by introducing blockchain to form an effective incentive mechanism for participants. However, DFDL still faces serious privacy issues as blockchain does not guarantee the privacy of training data and model. In this paper, in order to address the aforementioned issues, we propose a new Privacy-preserving DFDL scheme, called PDFDL. With PDFDL, parties can securely learn a global model with their local gradients in the assistance of blockchain, and the parties' sensitive data and the global model are well protected. Specifically, with a secure multi-party aggregation computing, all local gradients are encrypted by their owners before being sent to the smart contract, and can be directly aggregated without decryption. Detailed security analysis shows that PDFDL can resist various known security threats. Moreover, we give an implementation prototype by integrating deep learning module with a Blockchain development platform (Ethereum V1.6.4). We demonstrate the encryption performance and the training accuracy of our PDFDL on benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晅007完成签到,获得积分10
刚刚
刚刚
1秒前
慕青应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得30
2秒前
小马甲应助科研通管家采纳,获得30
2秒前
mashibeo应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
木头发布了新的文献求助10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
追风少年发布了新的文献求助10
2秒前
mashibeo应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
3秒前
汉堡包应助聪明的归尘采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
mashibeo应助科研通管家采纳,获得10
3秒前
3秒前
MOON完成签到,获得积分10
3秒前
昊天锤完成签到,获得积分10
4秒前
殷楷霖发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480496
求助须知:如何正确求助?哪些是违规求助? 4581690
关于积分的说明 14381729
捐赠科研通 4510321
什么是DOI,文献DOI怎么找? 2471702
邀请新用户注册赠送积分活动 1458148
关于科研通互助平台的介绍 1431837