Privacy-preserving Decentralized Federated Deep Learning

计算机科学 上传 联合学习 块链 深度学习 计算机安全 加密 水准点(测量) 激励 信息隐私 方案(数学) 同态加密 人工智能 机器学习 万维网 数学分析 数学 大地测量学 经济 微观经济学 地理
作者
Xudong Zhu,Hui Li
标识
DOI:10.1145/3472634.3472642
摘要

Deep learning has achieved the high-accuracy of state-of-the-art algorithms in long-standing AI tasks. Due to the obvious privacy issues of deep learning, Google proposes Federal Deep Learning (FDL), in which distributed participants only upload local gradients and and a centralized server updates parameters based on the collected gradients. But few users are willing to participate in federated learning due to the lack of contribution evaluation and reward mechanisms. So a decentralized federated deep learning, called DFDL, has been proposed by introducing blockchain to form an effective incentive mechanism for participants. However, DFDL still faces serious privacy issues as blockchain does not guarantee the privacy of training data and model. In this paper, in order to address the aforementioned issues, we propose a new Privacy-preserving DFDL scheme, called PDFDL. With PDFDL, parties can securely learn a global model with their local gradients in the assistance of blockchain, and the parties' sensitive data and the global model are well protected. Specifically, with a secure multi-party aggregation computing, all local gradients are encrypted by their owners before being sent to the smart contract, and can be directly aggregated without decryption. Detailed security analysis shows that PDFDL can resist various known security threats. Moreover, we give an implementation prototype by integrating deep learning module with a Blockchain development platform (Ethereum V1.6.4). We demonstrate the encryption performance and the training accuracy of our PDFDL on benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噗哧噗哧完成签到,获得积分10
1秒前
爱听歌的成仁完成签到,获得积分20
1秒前
1秒前
cyan完成签到,获得积分10
1秒前
1秒前
Gotyababy发布了新的文献求助10
1秒前
小鱼完成签到,获得积分10
2秒前
慕青应助OKADM采纳,获得10
2秒前
Aco完成签到,获得积分20
2秒前
邓宇杭发布了新的文献求助10
3秒前
guozizi发布了新的文献求助100
3秒前
SMLW完成签到,获得积分10
4秒前
科目三应助小瑞采纳,获得10
4秒前
抹茶肥肠完成签到,获得积分10
4秒前
科目三应助伶俐皮卡丘采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助100
5秒前
5秒前
竹子发布了新的文献求助10
5秒前
搜集达人应助Morois采纳,获得10
6秒前
6秒前
哆啦A涵发布了新的文献求助10
6秒前
Ava应助Mikey采纳,获得10
7秒前
7秒前
7秒前
077发布了新的文献求助10
7秒前
7秒前
己见发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
徐昊雯发布了新的文献求助10
8秒前
8秒前
9秒前
123发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
mai完成签到,获得积分20
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437