Privacy-preserving Decentralized Federated Deep Learning

计算机科学 上传 联合学习 块链 深度学习 计算机安全 加密 水准点(测量) 激励 信息隐私 方案(数学) 同态加密 人工智能 机器学习 万维网 数学分析 数学 大地测量学 经济 微观经济学 地理
作者
Xudong Zhu,Hui Li
标识
DOI:10.1145/3472634.3472642
摘要

Deep learning has achieved the high-accuracy of state-of-the-art algorithms in long-standing AI tasks. Due to the obvious privacy issues of deep learning, Google proposes Federal Deep Learning (FDL), in which distributed participants only upload local gradients and and a centralized server updates parameters based on the collected gradients. But few users are willing to participate in federated learning due to the lack of contribution evaluation and reward mechanisms. So a decentralized federated deep learning, called DFDL, has been proposed by introducing blockchain to form an effective incentive mechanism for participants. However, DFDL still faces serious privacy issues as blockchain does not guarantee the privacy of training data and model. In this paper, in order to address the aforementioned issues, we propose a new Privacy-preserving DFDL scheme, called PDFDL. With PDFDL, parties can securely learn a global model with their local gradients in the assistance of blockchain, and the parties' sensitive data and the global model are well protected. Specifically, with a secure multi-party aggregation computing, all local gradients are encrypted by their owners before being sent to the smart contract, and can be directly aggregated without decryption. Detailed security analysis shows that PDFDL can resist various known security threats. Moreover, we give an implementation prototype by integrating deep learning module with a Blockchain development platform (Ethereum V1.6.4). We demonstrate the encryption performance and the training accuracy of our PDFDL on benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
上官若男应助Dahai采纳,获得10
2秒前
2秒前
3秒前
Atlantic发布了新的文献求助10
3秒前
CX完成签到 ,获得积分10
4秒前
5秒前
冷傲半邪完成签到,获得积分10
5秒前
huanger完成签到,获得积分10
6秒前
jenny发布了新的文献求助10
7秒前
侯侯发布了新的文献求助10
7秒前
超靓诺言发布了新的文献求助10
8秒前
baby3480发布了新的文献求助10
8秒前
8秒前
Owen应助一汪采纳,获得10
8秒前
迪迦完成签到,获得积分10
8秒前
娜娜子完成签到,获得积分10
9秒前
清晾油完成签到,获得积分10
10秒前
FashionBoy应助淡定的半梦采纳,获得10
11秒前
大个应助838915882蒽采纳,获得10
11秒前
我先睡了发布了新的文献求助30
11秒前
隐形曼青应助沉默诗兰采纳,获得10
12秒前
SciGPT应助韩凡采纳,获得10
13秒前
13秒前
搜集达人应助maq采纳,获得10
15秒前
15秒前
Dahai发布了新的文献求助10
18秒前
zmk发布了新的文献求助10
18秒前
jenny完成签到,获得积分20
19秒前
Rondab应助英勇小蚂蚁采纳,获得30
19秒前
Atlantic完成签到,获得积分10
21秒前
838915882蒽完成签到,获得积分10
22秒前
23秒前
24秒前
佘楽发布了新的文献求助10
25秒前
25秒前
韩凡发布了新的文献求助10
26秒前
冷酷的夜完成签到,获得积分10
26秒前
838915882蒽发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432