Privacy-preserving Decentralized Federated Deep Learning

计算机科学 上传 联合学习 块链 深度学习 计算机安全 加密 水准点(测量) 激励 信息隐私 方案(数学) 同态加密 人工智能 机器学习 万维网 数学分析 数学 大地测量学 经济 微观经济学 地理
作者
Xudong Zhu,Hui Li
标识
DOI:10.1145/3472634.3472642
摘要

Deep learning has achieved the high-accuracy of state-of-the-art algorithms in long-standing AI tasks. Due to the obvious privacy issues of deep learning, Google proposes Federal Deep Learning (FDL), in which distributed participants only upload local gradients and and a centralized server updates parameters based on the collected gradients. But few users are willing to participate in federated learning due to the lack of contribution evaluation and reward mechanisms. So a decentralized federated deep learning, called DFDL, has been proposed by introducing blockchain to form an effective incentive mechanism for participants. However, DFDL still faces serious privacy issues as blockchain does not guarantee the privacy of training data and model. In this paper, in order to address the aforementioned issues, we propose a new Privacy-preserving DFDL scheme, called PDFDL. With PDFDL, parties can securely learn a global model with their local gradients in the assistance of blockchain, and the parties' sensitive data and the global model are well protected. Specifically, with a secure multi-party aggregation computing, all local gradients are encrypted by their owners before being sent to the smart contract, and can be directly aggregated without decryption. Detailed security analysis shows that PDFDL can resist various known security threats. Moreover, we give an implementation prototype by integrating deep learning module with a Blockchain development platform (Ethereum V1.6.4). We demonstrate the encryption performance and the training accuracy of our PDFDL on benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
欣喜咖啡完成签到,获得积分10
2秒前
完美世界应助曾曾采纳,获得10
2秒前
futong发布了新的文献求助10
2秒前
豆豆完成签到 ,获得积分10
2秒前
2秒前
3秒前
清脆的机器猫完成签到,获得积分10
3秒前
炙热夜绿完成签到,获得积分10
3秒前
4秒前
TeeteePor发布了新的文献求助10
4秒前
6秒前
Lee发布了新的文献求助10
6秒前
7秒前
何木萧完成签到,获得积分10
7秒前
9秒前
10秒前
努力的宁发布了新的文献求助10
10秒前
T_Y发布了新的文献求助10
10秒前
10秒前
夏夏发布了新的文献求助10
11秒前
13秒前
14秒前
科研通AI2S应助jjjdcjcj采纳,获得10
14秒前
15秒前
15秒前
wangyuanyuan发布了新的文献求助10
15秒前
17秒前
17秒前
小哲发布了新的文献求助30
18秒前
英姑应助T_Y采纳,获得10
18秒前
半山完成签到,获得积分10
18秒前
G.D完成签到 ,获得积分10
19秒前
隐形傲霜完成签到 ,获得积分10
20秒前
小乖发布了新的文献求助10
20秒前
20秒前
英勇善愁完成签到,获得积分10
21秒前
度ewf发布了新的文献求助10
21秒前
hyw完成签到,获得积分10
22秒前
迟迟完成签到 ,获得积分10
24秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499570
求助须知:如何正确求助?哪些是违规求助? 4596391
关于积分的说明 14454281
捐赠科研通 4529548
什么是DOI,文献DOI怎么找? 2482060
邀请新用户注册赠送积分活动 1466041
关于科研通互助平台的介绍 1438891