Privacy-preserving Decentralized Federated Deep Learning

计算机科学 上传 联合学习 块链 深度学习 计算机安全 加密 水准点(测量) 激励 信息隐私 方案(数学) 同态加密 人工智能 机器学习 万维网 数学分析 数学 大地测量学 经济 微观经济学 地理
作者
Xudong Zhu,Hui Li
标识
DOI:10.1145/3472634.3472642
摘要

Deep learning has achieved the high-accuracy of state-of-the-art algorithms in long-standing AI tasks. Due to the obvious privacy issues of deep learning, Google proposes Federal Deep Learning (FDL), in which distributed participants only upload local gradients and and a centralized server updates parameters based on the collected gradients. But few users are willing to participate in federated learning due to the lack of contribution evaluation and reward mechanisms. So a decentralized federated deep learning, called DFDL, has been proposed by introducing blockchain to form an effective incentive mechanism for participants. However, DFDL still faces serious privacy issues as blockchain does not guarantee the privacy of training data and model. In this paper, in order to address the aforementioned issues, we propose a new Privacy-preserving DFDL scheme, called PDFDL. With PDFDL, parties can securely learn a global model with their local gradients in the assistance of blockchain, and the parties' sensitive data and the global model are well protected. Specifically, with a secure multi-party aggregation computing, all local gradients are encrypted by their owners before being sent to the smart contract, and can be directly aggregated without decryption. Detailed security analysis shows that PDFDL can resist various known security threats. Moreover, we give an implementation prototype by integrating deep learning module with a Blockchain development platform (Ethereum V1.6.4). We demonstrate the encryption performance and the training accuracy of our PDFDL on benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pxwhhh完成签到,获得积分10
1秒前
木光完成签到,获得积分10
1秒前
黄诺完成签到 ,获得积分10
1秒前
李钢完成签到 ,获得积分10
2秒前
徐志豪发布了新的文献求助10
2秒前
喜羊羊完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
聪明绝顶完成签到,获得积分10
4秒前
Steph发布了新的文献求助10
5秒前
5秒前
田様应助风带走黎明采纳,获得10
5秒前
Ava应助诚心的黑猫采纳,获得10
6秒前
6秒前
6秒前
我是老大应助哦哦哦采纳,获得10
6秒前
liu bo应助无限的含蕾采纳,获得10
7秒前
激动的大山完成签到,获得积分20
7秒前
小瓶完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
我不是笨蛋完成签到,获得积分10
9秒前
香蕉觅云应助沧海医僧笑采纳,获得10
9秒前
哒哒发布了新的文献求助10
9秒前
一只耳完成签到,获得积分10
10秒前
打打应助小蘑材采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
打小老虎发布了新的文献求助10
12秒前
12秒前
顾矜应助middlee采纳,获得10
12秒前
67837发布了新的文献求助10
12秒前
妙bu可yan完成签到,获得积分10
12秒前
xiaolv应助liang采纳,获得30
13秒前
alex发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494