亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network

计算机科学 人工智能 可解释性 对象(语法) 图形 可视化 利用 稳健性(进化) 卷积神经网络 计算机视觉 理论计算机科学 计算机安全 生物化学 基因 化学
作者
Jingyuan Yang,Xinbo Gao,Leida Li,Xiumei Wang,Jinshan Ding
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8686-8701 被引量:2
标识
DOI:10.1109/tip.2021.3118983
摘要

Visual Emotion Analysis (VEA) aims at finding out how people feel emotionally towards different visual stimuli, which has attracted great attention recently with the prevalence of sharing images on social networks. Since human emotion involves a highly complex and abstract cognitive process, it is difficult to infer visual emotions directly from holistic or regional features in affective images. It has been demonstrated in psychology that visual emotions are evoked by the interactions between objects as well as the interactions between objects and scenes within an image. Inspired by this, we propose a novel Scene-Object interreLated Visual Emotion Reasoning network (SOLVER) to predict emotions from images. To mine the emotional relationships between distinct objects, we first build up an Emotion Graph based on semantic concepts and visual features. Then, we conduct reasoning on the Emotion Graph using Graph Convolutional Network (GCN), yielding emotion-enhanced object features. We also design a Scene-Object Fusion Module to integrate scenes and objects, which exploits scene features to guide the fusion process of object features with the proposed scene-based attention mechanism. Extensive experiments and comparisons are conducted on eight public visual emotion datasets, and the results demonstrate that the proposed SOLVER consistently outperforms the state-of-the-art methods by a large margin. Ablation studies verify the effectiveness of our method and visualizations prove its interpretability, which also bring new insight to explore the mysteries in VEA. Notably, we further discuss SOLVER on three other potential datasets with extended experiments, where we validate the robustness of our method and notice some limitations of it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
leapper发布了新的文献求助10
36秒前
gentleman完成签到,获得积分10
46秒前
无花果应助科研通管家采纳,获得30
56秒前
58秒前
量子星尘发布了新的文献求助50
1分钟前
Daniel发布了新的文献求助10
1分钟前
完美世界应助沉醉的中国钵采纳,获得100
1分钟前
2分钟前
SciGPT应助城。采纳,获得10
2分钟前
粱青寒完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
城。发布了新的文献求助10
2分钟前
2分钟前
shi发布了新的文献求助10
2分钟前
乐乐应助shi采纳,获得10
2分钟前
2分钟前
2分钟前
wanci应助城。采纳,获得10
3分钟前
3分钟前
3分钟前
wanli发布了新的文献求助10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
wanli完成签到,获得积分10
3分钟前
搜集达人应助周而复始@采纳,获得10
4分钟前
4分钟前
学生信的大叔完成签到,获得积分10
4分钟前
周而复始@发布了新的文献求助10
4分钟前
daiyu发布了新的文献求助10
4分钟前
情怀应助周而复始@采纳,获得10
4分钟前
daiyu完成签到,获得积分20
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
周而复始@完成签到,获得积分10
5分钟前
5分钟前
5分钟前
宋艳芳完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889315
求助须知:如何正确求助?哪些是违规求助? 4173414
关于积分的说明 12952008
捐赠科研通 3934811
什么是DOI,文献DOI怎么找? 2159027
邀请新用户注册赠送积分活动 1177325
关于科研通互助平台的介绍 1082170