SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network

计算机科学 人工智能 可解释性 对象(语法) 图形 可视化 利用 稳健性(进化) 卷积神经网络 计算机视觉 理论计算机科学 计算机安全 生物化学 基因 化学
作者
Jingyuan Yang,Xinbo Gao,Leida Li,Xiumei Wang,Jinshan Ding
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8686-8701 被引量:2
标识
DOI:10.1109/tip.2021.3118983
摘要

Visual Emotion Analysis (VEA) aims at finding out how people feel emotionally towards different visual stimuli, which has attracted great attention recently with the prevalence of sharing images on social networks. Since human emotion involves a highly complex and abstract cognitive process, it is difficult to infer visual emotions directly from holistic or regional features in affective images. It has been demonstrated in psychology that visual emotions are evoked by the interactions between objects as well as the interactions between objects and scenes within an image. Inspired by this, we propose a novel Scene-Object interreLated Visual Emotion Reasoning network (SOLVER) to predict emotions from images. To mine the emotional relationships between distinct objects, we first build up an Emotion Graph based on semantic concepts and visual features. Then, we conduct reasoning on the Emotion Graph using Graph Convolutional Network (GCN), yielding emotion-enhanced object features. We also design a Scene-Object Fusion Module to integrate scenes and objects, which exploits scene features to guide the fusion process of object features with the proposed scene-based attention mechanism. Extensive experiments and comparisons are conducted on eight public visual emotion datasets, and the results demonstrate that the proposed SOLVER consistently outperforms the state-of-the-art methods by a large margin. Ablation studies verify the effectiveness of our method and visualizations prove its interpretability, which also bring new insight to explore the mysteries in VEA. Notably, we further discuss SOLVER on three other potential datasets with extended experiments, where we validate the robustness of our method and notice some limitations of it.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜鹭洋完成签到 ,获得积分10
1秒前
孟雯毓完成签到,获得积分10
1秒前
幸运雨点完成签到,获得积分10
1秒前
2秒前
拼搏迎梦完成签到,获得积分10
2秒前
CodeCraft应助海獭敲牡蛎采纳,获得10
3秒前
fff完成签到 ,获得积分10
7秒前
nakl发布了新的文献求助10
8秒前
哈哈哈大赞完成签到,获得积分10
8秒前
白枫完成签到 ,获得积分10
9秒前
xxxxqqqqaaa完成签到,获得积分10
10秒前
xyzlancet完成签到,获得积分10
11秒前
韦远侵完成签到,获得积分10
13秒前
MTF完成签到 ,获得积分10
15秒前
番茄炒西红柿完成签到,获得积分10
16秒前
egoistMM完成签到,获得积分10
17秒前
cxl完成签到,获得积分10
18秒前
在水一方应助科研通管家采纳,获得10
19秒前
香蕉诗蕊应助科研通管家采纳,获得20
19秒前
lylyspeechless完成签到,获得积分10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
林晚停应助科研通管家采纳,获得10
19秒前
妩媚的海应助科研通管家采纳,获得50
19秒前
香蕉诗蕊应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
小蜗爬爬应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
Zx_1993应助科研通管家采纳,获得10
19秒前
Frank完成签到 ,获得积分10
19秒前
无极微光应助科研通管家采纳,获得20
19秒前
Lucas应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
香蕉诗蕊应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539314
求助须知:如何正确求助?哪些是违规求助? 4626076
关于积分的说明 14597627
捐赠科研通 4566895
什么是DOI,文献DOI怎么找? 2503687
邀请新用户注册赠送积分活动 1481599
关于科研通互助平台的介绍 1453173