SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network

计算机科学 人工智能 可解释性 对象(语法) 图形 可视化 利用 稳健性(进化) 卷积神经网络 计算机视觉 理论计算机科学 计算机安全 生物化学 基因 化学
作者
Jingyuan Yang,Xinbo Gao,Leida Li,Xiumei Wang,Jinshan Ding
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8686-8701 被引量:2
标识
DOI:10.1109/tip.2021.3118983
摘要

Visual Emotion Analysis (VEA) aims at finding out how people feel emotionally towards different visual stimuli, which has attracted great attention recently with the prevalence of sharing images on social networks. Since human emotion involves a highly complex and abstract cognitive process, it is difficult to infer visual emotions directly from holistic or regional features in affective images. It has been demonstrated in psychology that visual emotions are evoked by the interactions between objects as well as the interactions between objects and scenes within an image. Inspired by this, we propose a novel Scene-Object interreLated Visual Emotion Reasoning network (SOLVER) to predict emotions from images. To mine the emotional relationships between distinct objects, we first build up an Emotion Graph based on semantic concepts and visual features. Then, we conduct reasoning on the Emotion Graph using Graph Convolutional Network (GCN), yielding emotion-enhanced object features. We also design a Scene-Object Fusion Module to integrate scenes and objects, which exploits scene features to guide the fusion process of object features with the proposed scene-based attention mechanism. Extensive experiments and comparisons are conducted on eight public visual emotion datasets, and the results demonstrate that the proposed SOLVER consistently outperforms the state-of-the-art methods by a large margin. Ablation studies verify the effectiveness of our method and visualizations prove its interpretability, which also bring new insight to explore the mysteries in VEA. Notably, we further discuss SOLVER on three other potential datasets with extended experiments, where we validate the robustness of our method and notice some limitations of it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
李健应助来轩采纳,获得10
3秒前
充电宝应助温婉的幻梦采纳,获得10
3秒前
Owen应助Crrr采纳,获得10
4秒前
4秒前
科研通AI2S应助靖柔采纳,获得10
5秒前
王治豪发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
庸俗完成签到,获得积分10
6秒前
giao发布了新的文献求助10
8秒前
大个应助立军采纳,获得10
8秒前
Spirit发布了新的文献求助10
8秒前
清秀的月亮完成签到,获得积分10
10秒前
chum555发布了新的文献求助10
10秒前
zz完成签到,获得积分10
11秒前
烟花应助star采纳,获得30
12秒前
派大星完成签到,获得积分10
15秒前
ygr完成签到,获得积分0
16秒前
17秒前
luluki完成签到 ,获得积分10
17秒前
CodeCraft应助Fickle采纳,获得30
17秒前
18秒前
ZWZ发布了新的文献求助20
18秒前
健壮的百褶裙完成签到,获得积分10
20秒前
Annie发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
Crrr完成签到,获得积分10
24秒前
ZWZ完成签到,获得积分10
25秒前
Crrr发布了新的文献求助10
27秒前
Hello应助科研通管家采纳,获得10
28秒前
橘子石榴应助科研通管家采纳,获得10
28秒前
思源应助科研通管家采纳,获得10
28秒前
爆米花应助科研通管家采纳,获得10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812642
关于积分的说明 7895839
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316030
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112