亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network

计算机科学 人工智能 可解释性 对象(语法) 图形 可视化 利用 稳健性(进化) 卷积神经网络 计算机视觉 理论计算机科学 计算机安全 生物化学 基因 化学
作者
Jingyuan Yang,Xinbo Gao,Leida Li,Xiumei Wang,Jinshan Ding
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8686-8701 被引量:2
标识
DOI:10.1109/tip.2021.3118983
摘要

Visual Emotion Analysis (VEA) aims at finding out how people feel emotionally towards different visual stimuli, which has attracted great attention recently with the prevalence of sharing images on social networks. Since human emotion involves a highly complex and abstract cognitive process, it is difficult to infer visual emotions directly from holistic or regional features in affective images. It has been demonstrated in psychology that visual emotions are evoked by the interactions between objects as well as the interactions between objects and scenes within an image. Inspired by this, we propose a novel Scene-Object interreLated Visual Emotion Reasoning network (SOLVER) to predict emotions from images. To mine the emotional relationships between distinct objects, we first build up an Emotion Graph based on semantic concepts and visual features. Then, we conduct reasoning on the Emotion Graph using Graph Convolutional Network (GCN), yielding emotion-enhanced object features. We also design a Scene-Object Fusion Module to integrate scenes and objects, which exploits scene features to guide the fusion process of object features with the proposed scene-based attention mechanism. Extensive experiments and comparisons are conducted on eight public visual emotion datasets, and the results demonstrate that the proposed SOLVER consistently outperforms the state-of-the-art methods by a large margin. Ablation studies verify the effectiveness of our method and visualizations prove its interpretability, which also bring new insight to explore the mysteries in VEA. Notably, we further discuss SOLVER on three other potential datasets with extended experiments, where we validate the robustness of our method and notice some limitations of it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫幻丝完成签到,获得积分10
8秒前
33秒前
1分钟前
1分钟前
ZGavin应助科研通管家采纳,获得10
1分钟前
1分钟前
朴素千亦完成签到 ,获得积分10
1分钟前
2分钟前
mickaqi完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
cy0824完成签到 ,获得积分10
3分钟前
追寻的纸鹤完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
lin发布了新的文献求助10
4分钟前
4分钟前
老实的南风完成签到 ,获得积分10
5分钟前
Hello应助lin采纳,获得10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
打打应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
40873完成签到 ,获得积分10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
充电宝应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
wanci应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
Tine发布了新的文献求助10
7分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454959
求助须知:如何正确求助?哪些是违规求助? 4562235
关于积分的说明 14284961
捐赠科研通 4486104
什么是DOI,文献DOI怎么找? 2457241
邀请新用户注册赠送积分活动 1447850
关于科研通互助平台的介绍 1423075