摘要
Peroxisome proliferator-activated receptor gamma (PPARγ) is a critical transcription factor regulating lipid and glucose metabolism. However, the regulatory effect of PPARγ on milk fat synthesis in buffalo mammary gland is not clear. In order to explore the role of buffalo PPARG gene in milk fat synthesis, lentivirus-mediated interference was used to knock it down and then the recombinant fusion expression vector was transfected into buffalo mammary epithelial cell (BMEC) to overexpress it. PPARG gene knockdown significantly decreased the expression of CD36, FABP3, FABP4, ACSS2, ELOVL6, DGAT2, BTN1A1, AGPAT6, LPIN1, ABCG2, PPARGC1A, INSIG1, FASN, and SREBF2 genes and significantly upregulated the expression of INSIG2 gene but had no significant effect on the expression of ACSL1, GPAM, and SREBF1 genes. PPARG overexpression significantly increased the relative mRNA abundance of CD36, FABP3, FABP4, ACSS2, ELOVL6, DGAT2, BTN1A1, AGPAT6, LPIN1, PPARGC1A, INSIG1, and SREBF2 genes and significantly downregulated the expression of INSIG2 gene but had no significant effect on the expression of ACSL1, GPAM, ABCG2, FASN, and SREBF1 genes. In addition, knockdown/overexpression of PPARG gene significantly decreased/increased triacylglycerol (TAG) content in BMECs. This study revealed that buffalo PPARG gene is a key gene regulating buffalo milk fat synthesis.