单重态
有机太阳能电池
材料科学
接受者
带隙
结晶度
能量转换效率
共价键
聚合物
混溶性
有机半导体
太阳能电池
光化学
三重态
化学
光电子学
原子物理学
分子
物理
有机化学
激发态
复合材料
凝聚态物理
作者
Shuting Pang,Zhiqiang Wang,Xiyue Yuan,Langheng Pan,Wanyuan Deng,Haoran Tang,Hongbin Wu,Shanshan Chen,Chunhui Duan,Fei Huang,Yong Cao
标识
DOI:10.1002/anie.202016265
摘要
Abstract High‐efficiency organic solar cells (OSCs) largely rely on polymer donors. Herein, we report a new building block BNT and a relevant polymer PBNT‐BDD featuring B‐N covalent bond for application in OSCs. The BNT unit is synthesized in only 3 steps, leading to the facile synthesis of PBNT‐BDD. When blended with a nonfullerene acceptor Y6‐BO, PBNT‐BDD afforded a power conversion efficiency (PCE) of 16.1 % in an OSC, comparable to the benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based counterpart. The nonradiative recombination energy loss of 0.19 eV was afforded by PBNT‐BDD. PBNT‐BDD also exhibited weak crystallinity and appropriate miscibility with Y6‐BO, benefitting of morphological stability. The singlet–triplet gap (Δ E ST ) of PBNT‐BDD is as low as 0.15 eV, which is much lower than those of common organic semiconductors (≥0.6 eV). As a result, the triplet state of PBNT‐BDD is higher than the charge transfer (CT) state, which would suppress the recombination via triplet state effectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI