Investigating the effects of tabs geometry and current collectors thickness of lithium-ion battery with electrochemical-thermal simulation

电池(电) 热失控 电解质 锂离子电池 材料科学 发热 离子 电极 荷电状态 涓流充电 核工程 锂(药物) 热的 电化学 化学 热力学 功率(物理) 工程类 物理 内分泌学 物理化学 有机化学 医学
作者
M.A. Bayatinejad,Arash Mohammadi
出处
期刊:Journal of energy storage [Elsevier]
卷期号:43: 103203-103203 被引量:11
标识
DOI:10.1016/j.est.2021.103203
摘要

Lithium-ion batteries, which perform based on the migration of lithium-ion between positive and negative electrodes, are used as a new and rechargeable energy source in electric and hybrid electric vehicles. Lithium-ion batteries should be designed to enhance the performance, lifespan, and durability of the battery. It should also prevent the risk of the thermal runaway and battery explosion at high discharge rates. In this article, a prismatic single-cell of lithium-ion battery is simulated with three-dimensional computational fluid dynamics during discharge cycles at different rates using the electrochemical-thermal method. First, numerical simulation results are validated with experimental results. Then, the results of the state of charge, the electrical potential distribution, the lithium-ion concentration in electrodes and electrolyte, the temperature distribution and the heat generation rate during the discharge cycles at different rates are presented. Finally, by modifying the geometry of the battery and the location of the positive and negative tabs, it has been tried to improve the uniformity of battery parameters such as the lithium-ion concentration and the state of charge and to reduce the maximum battery surface temperature. In the improved geometry, it was observed that the total heat generation rate and the maximum temperature of the battery surface decreased by 19.94% and 2.12 K, respectively. Also, the uniformity in the temperature distribution increased by 47.3% compared to the original geometry of the battery. This will increase the lifespan of the battery and it can also prevent the risk of the thermal runaway at high discharge rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RMgX发布了新的文献求助10
1秒前
笔记本应助曦沐采纳,获得20
1秒前
AAA发布了新的文献求助10
2秒前
眼睛大笑卉完成签到,获得积分10
3秒前
Jing发布了新的文献求助10
3秒前
琦琦完成签到,获得积分10
6秒前
6秒前
lch23560应助小小的太阳采纳,获得30
7秒前
9秒前
Lucas应助坎坷采纳,获得10
9秒前
汉堡包应助Jing采纳,获得10
10秒前
10秒前
11秒前
今后应助赵安安采纳,获得10
11秒前
可爱的函函应助hint采纳,获得10
11秒前
11秒前
白小白完成签到,获得积分10
11秒前
lv完成签到,获得积分10
12秒前
12秒前
13秒前
天天快乐应助单薄千青采纳,获得10
13秒前
大海完成签到 ,获得积分10
13秒前
BioZheng完成签到,获得积分10
14秒前
Island D发布了新的文献求助10
14秒前
lv发布了新的文献求助10
15秒前
自信鞯发布了新的文献求助10
15秒前
Huangy000发布了新的文献求助10
15秒前
小皮蛋完成签到,获得积分10
16秒前
16秒前
17秒前
ag发布了新的文献求助10
18秒前
18秒前
Yara.H发布了新的文献求助10
18秒前
19秒前
20秒前
在水一方应助夜王采纳,获得10
21秒前
啊咧完成签到,获得积分10
22秒前
SciGPT应助自信鞯采纳,获得10
22秒前
RMgX完成签到,获得积分10
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125118
求助须知:如何正确求助?哪些是违规求助? 2775421
关于积分的说明 7726646
捐赠科研通 2430997
什么是DOI,文献DOI怎么找? 1291569
科研通“疑难数据库(出版商)”最低求助积分说明 622188
版权声明 600352