Investigating the effects of tabs geometry and current collectors thickness of lithium-ion battery with electrochemical-thermal simulation

电池(电) 热失控 电解质 锂离子电池 材料科学 发热 离子 电极 荷电状态 涓流充电 核工程 锂(药物) 热的 电化学 化学 热力学 功率(物理) 工程类 物理 内分泌学 物理化学 有机化学 医学
作者
M.A. Bayatinejad,Arash Mohammadi
出处
期刊:Journal of energy storage [Elsevier]
卷期号:43: 103203-103203 被引量:11
标识
DOI:10.1016/j.est.2021.103203
摘要

Lithium-ion batteries, which perform based on the migration of lithium-ion between positive and negative electrodes, are used as a new and rechargeable energy source in electric and hybrid electric vehicles. Lithium-ion batteries should be designed to enhance the performance, lifespan, and durability of the battery. It should also prevent the risk of the thermal runaway and battery explosion at high discharge rates. In this article, a prismatic single-cell of lithium-ion battery is simulated with three-dimensional computational fluid dynamics during discharge cycles at different rates using the electrochemical-thermal method. First, numerical simulation results are validated with experimental results. Then, the results of the state of charge, the electrical potential distribution, the lithium-ion concentration in electrodes and electrolyte, the temperature distribution and the heat generation rate during the discharge cycles at different rates are presented. Finally, by modifying the geometry of the battery and the location of the positive and negative tabs, it has been tried to improve the uniformity of battery parameters such as the lithium-ion concentration and the state of charge and to reduce the maximum battery surface temperature. In the improved geometry, it was observed that the total heat generation rate and the maximum temperature of the battery surface decreased by 19.94% and 2.12 K, respectively. Also, the uniformity in the temperature distribution increased by 47.3% compared to the original geometry of the battery. This will increase the lifespan of the battery and it can also prevent the risk of the thermal runaway at high discharge rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
深情安青应助机智的青槐采纳,获得10
3秒前
茶茶发布了新的文献求助10
3秒前
szl发布了新的文献求助10
3秒前
Lucas应助京阿尼采纳,获得10
4秒前
甜甜晓露完成签到,获得积分10
5秒前
科研通AI5应助qifa采纳,获得10
5秒前
shrike完成签到 ,获得积分10
5秒前
有魅力白开水完成签到,获得积分20
5秒前
小蒲完成签到 ,获得积分10
6秒前
万能图书馆应助大力鱼采纳,获得10
6秒前
7秒前
Rrr发布了新的文献求助10
8秒前
跳跃的静曼完成签到,获得积分10
8秒前
丰富的不惜完成签到,获得积分10
9秒前
10秒前
wfc完成签到,获得积分10
10秒前
浅梨涡完成签到 ,获得积分10
12秒前
JamesPei应助椰子熟了耶采纳,获得20
13秒前
hanyang965发布了新的文献求助10
13秒前
orixero应助喵呜采纳,获得10
13秒前
13秒前
13秒前
14秒前
en发布了新的文献求助10
14秒前
15秒前
白宝宝北北白应助氕氘氚采纳,获得10
15秒前
16秒前
进取拼搏完成签到,获得积分10
16秒前
hehsk完成签到,获得积分10
16秒前
无限鞅完成签到,获得积分20
16秒前
17秒前
DY完成签到 ,获得积分10
18秒前
郑仕完成签到,获得积分10
18秒前
18秒前
进取拼搏发布了新的文献求助10
19秒前
顺顺发布了新的文献求助10
19秒前
19秒前
在水一方应助涛涛采纳,获得10
19秒前
英姑应助义气的傲松采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808