材料科学
钒
插层(化学)
离子键合
氧化还原
快离子导体
结晶学
离子半径
X射线吸收光谱法
固溶体
离子
分析化学(期刊)
无机化学
电解质
吸收光谱法
物理化学
电极
化学
量子力学
物理
有机化学
冶金
色谱法
作者
Subham Ghosh,Nabadyuti Barman,Eliovardo Gonzalez‐Correa,Madhulika Mazumder,Aryan Zaveri,Raynald Giovine,Alexis G. Manche,Swapan K. Pati,Raphaële J. Clément,Premkumar Senguttuvan
标识
DOI:10.1002/adfm.202105463
摘要
Abstract Vanadium multiredox‐based NASICON‐Na z V 2− y M y (PO 4 ) 3 (3 ≤ z ≤ 4; M = Al 3+ , Cr 3+ , and Mn 2+ ) cathodes are particularly attractive for Na‐ion battery applications due to their high Na insertion voltage (>3.5 V vs Na + /Na 0 ), reversible storage capacity (≈150 mA h g −1 ), and rate performance. However, their practical application is hindered by rapid capacity fade due to bulk structural rearrangements at high potentials involving complex redox and local structural changes. To decouple these factors, a series of Mg 2+ ‐substituted Na 3+ y V 2− y Mg y (PO 4 ) 3 (0 ≤ y ≤ 1) cathodes is studied for which the only redox‐active species is vanadium. While X‐ray diffraction (XRD) confirms the formation of solid solutions between the y = 0 and 1 end members, X‐ray absorption spectroscopy and solid‐state nuclear magnetic resonance reveal a complex evolution of the local structure upon progressive Mg 2+ substitution for V 3+ . Concurrently, the intercalation voltage rises from 3.35 to 3.45 V, due to increasingly more ionic VO bonds, and the sodium (de)intercalation mechanism transitions from a two‐phase for y ≤ 0.5 to a solid solution process for y ≥ 0.5, as confirmed by in operando XRD, while Na‐ion diffusion kinetics follow a nonlinear trend across the compositional series.
科研通智能强力驱动
Strongly Powered by AbleSci AI