Self‐Supported Electrocatalysts for Practical Water Electrolysis

材料科学 双功能 电解 分解水 背景(考古学) 电解水 纳米技术 制氢 电催化剂 制作 电化学 催化作用 电解质 光催化 电极 化学 生物 病理 物理化学 古生物学 医学 生物化学 替代医学
作者
Hongyuan Yang,Matthias Drieß,Prashanth W. Menezes
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:11 (39) 被引量:306
标识
DOI:10.1002/aenm.202102074
摘要

Abstract Over the years, significant advances have been made to boost the efficiency of water splitting by carefully designing economic electrocatalysts with augmented conductivity, more accessible active sites, and high intrinsic activity in laboratory test conditions. However, it remains a challenge to develop earth‐abundant catalysts that can satisfy the demands of practical water electrolysis, that is, outstanding all‐pH electrolyte capacity, direct seawater splitting ability, exceptional performance for overall water splitting, superior large‐current‐density activity, and robust long‐term durability. In this context, considering the features of increased active species loading, rapid charge, and mass transfer, a strong affinity between catalytic components and substrates, easily‐controlled wettability, as well as, enhanced bifunctional performance, the self‐supported electrocatalysts are presently projected to be the most suitable contenders for practical massive scale hydrogen generation. In this review, a comprehensive introduction to the design and fabrication of self‐supported electrocatalysts with an emphasis on the design of deposited nanostructured catalysts, the selection of self‐supported substrates, and various fabrication methods are provided. Thereafter, the recent development of promising self‐supported electrocatalysts for practical applications is reviewed from the aforementioned aspects. Finally, a brief conclusion is delivered and the challenges and perspectives relating to promotion of self‐supported electrocatalysts for sustainable large‐scale production of hydrogen are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
长情的千风完成签到,获得积分20
1秒前
2秒前
2秒前
凹凸先森应助高会和采纳,获得10
2秒前
小蘑菇应助法桐落梦采纳,获得10
3秒前
小面包发布了新的文献求助10
3秒前
泡泡完成签到,获得积分10
3秒前
一把白刀完成签到 ,获得积分10
4秒前
无花果应助干净的雪一采纳,获得10
4秒前
marco完成签到 ,获得积分10
5秒前
shuo发布了新的文献求助10
5秒前
5秒前
渊崖曙春应助LL采纳,获得10
5秒前
图灵桑完成签到,获得积分10
5秒前
圆滚滚发布了新的文献求助10
5秒前
冥王星发布了新的文献求助10
5秒前
蕾蕾完成签到 ,获得积分10
5秒前
搜集达人应助美丽映容采纳,获得10
7秒前
meng发布了新的文献求助10
8秒前
科研通AI5应助卓若之采纳,获得10
9秒前
上官若男应助君无邪采纳,获得10
10秒前
FJ完成签到,获得积分20
10秒前
12秒前
冥王星完成签到,获得积分20
12秒前
谦让的西装完成签到 ,获得积分10
12秒前
13秒前
14秒前
大模型应助piooo采纳,获得30
14秒前
充电宝应助张立人采纳,获得10
15秒前
15秒前
15秒前
15秒前
xx发布了新的文献求助10
16秒前
may完成签到 ,获得积分10
16秒前
背后的忆文完成签到,获得积分10
16秒前
科研通AI5应助闹闹采纳,获得10
17秒前
alongi3发布了新的文献求助10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479266
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116103
捐赠科研通 2761731
什么是DOI,文献DOI怎么找? 1515477
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699931