A Transformer Model-Based Approach to Bearing Fault Diagnosis

卷积神经网络 变压器 方位(导航) 特征提取 断层(地质) 降噪 计算机科学 模式识别(心理学) 故障检测与隔离 数据挖掘 人工智能 地质学 工程类 电气工程 地震学 执行机构 电压
作者
Zhenshan Bao,Jialei Du,Wenbo Zhang,Jiajing Wang,Tao Qiu,Yan Cao
出处
期刊:Communications in computer and information science 卷期号:: 65-79 被引量:3
标识
DOI:10.1007/978-981-16-5940-9_5
摘要

Bearings are an important component in rotating machinery and their failure can lead to serious injuries and economic losses, therefore the diagnosis of bearing faults and the guarantee of their smooth operation are essential steps in maintaining the safe and stable operation of modern machinery and equipment. Traditional bearing fault diagnosis methods focus on manually designing complex noise reduction, filtering, and feature extraction processes, however, these processes are too cumbersome and lack intelligence, making it increasingly difficult to rely on manual diagnosis with large amounts of data. With the development of information technology, convolutional neural networks have been proposed for bearing fault detection and identification. However, these convolutional models have the disadvantage of having difficulty handling fault-time information, leading to a lack of classification accuracy. So this paper proposes a transformer-based fault diagnosis method, using the short-time Fourier transform to convert the one-dimensional fault signal into a two-dimensional image, and then input the two-dimensional image into the transformer model for classification. Experimental results show that the fault classification can reach an accuracy of 98.45%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的背包完成签到,获得积分10
1秒前
1秒前
赘婿应助Elaine采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
科研小白完成签到,获得积分10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得50
2秒前
CodeCraft应助科研通管家采纳,获得30
2秒前
控制小弟应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
彭于晏完成签到,获得积分10
3秒前
勤劳元瑶完成签到,获得积分10
3秒前
whatever举报muzi求助涉嫌违规
4秒前
小白发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
搬砖工完成签到,获得积分10
5秒前
Lucas应助圈圈采纳,获得10
6秒前
NexusExplorer应助韭菜盒子采纳,获得10
6秒前
6秒前
Harlotte发布了新的文献求助10
6秒前
就是我完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740