Prediction of leaf traits of lianas and trees via the integration of wavelet spectra in the visible-near infrared and thermal infrared domains

藤本植物 小波 偏最小二乘回归 天蓬 树(集合论) 主成分分析 遥感 小波变换 生物系统 数学 统计 植物 计算机科学 生物 人工智能 地质学 数学分析
作者
G. Arturo Sánchez-Azofeifa
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:259: 112406-112406 被引量:6
标识
DOI:10.1016/j.rse.2021.112406
摘要

Predicting leaf traits using models based on spectroscopic data can provide essential information to advance ecological research and future Earth system models. Most current models are based on Partial Least Squares Regression (PLSR) algorithms that attempt to predict a set of leaf traits of several plant groups using leaf spectra. However, PLSR models tend to be inconsistent in describing the importance of absorption features when used to predict leaf traits. Likewise, the effect of contrasting absorption features of different plant groups on the prediction and evaluation of PLSR models is not well understood. Hence, this study focuses on using wavelet spectra to overcome current PLSR's limitation and improve leaf trait predictions. Specifically, we explored the use of visible–near-infrared (0.45–1.0 μm) and mid- long-wave infrared spectra (2.55–11 μm) to predict three-leaf traits of lianas and trees: Leaf Mass Area (LMA), Water Content (WC), and Equivalent Water Thickness (EWT). We also compare the effect of life forms on the prediction of traits by using sun leaves collected from 14 liana species and 21 tree species ( n = 700) from a Neotropical Dry Forest. On each leaf, reflectance measurements were performed for both selected spectral regions; then, leaf traits were estimated from a leaf segment. Leaf reflectance was first resampled and then processed using continuous wavelet transformation (CWT) to derive the wavelet spectra. PLSR models linking the leaf traits and the reflectance or wavelet spectra were compared. Our results reveal that PLSR models based on wavelet spectra require fewer components to predict traits (13–16) than those based on reflectance (25–29). In addition, PLSR models' performance (e.g., R 2 ) of testing datasets tend to be higher for models based on wavelet spectra (LMA = 0.83; WC = 0.77; EWT = 0.68) than reflectance (LMA = 0.78; WC = 0.76; EWT = 0.49). Wavelet spectra models also seem to better characterize absorption features that drive the variability of leaf traits than models based on reflectance. However, life forms play an essential role in model performance, where the prediction of lianas' traits presenting lower R 2 ( R 2 = 0.61 ± 0.25) than trees' traits ( R 2 = 0.69 ± 0.15) regardless of the type of spectra or leaf trait. Our findings highlight the use of wavelet spectra to overcome limitations of the PLSR models for predicting leaf traits and the need to explore potential bias associated with plant groups on the model evaluations. • PLSR models based on reflectance and wavelet spectra were evaluated. • Models based on wavelet spectra improve the performance for predicting traits. • Trait prediction requires fewer components when wavelet spectra models are used. • Wavelet spectral models enhanced the importance of bands for predicting traits. • The performance of trait prediction differs between lianas and trees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
poletar发布了新的文献求助10
1秒前
EWW发布了新的文献求助20
1秒前
xxw发布了新的文献求助10
1秒前
2秒前
2秒前
一休关注了科研通微信公众号
2秒前
Ivy完成签到,获得积分10
2秒前
3秒前
3秒前
Syyyyy发布了新的文献求助10
4秒前
4秒前
4秒前
华仔应助aa采纳,获得10
4秒前
魁梧的灵安关注了科研通微信公众号
4秒前
4秒前
5秒前
小龙发布了新的文献求助10
5秒前
TTT完成签到,获得积分10
5秒前
yinghua发布了新的文献求助10
5秒前
美好斓发布了新的文献求助10
5秒前
Lisuo应助飞宇采纳,获得20
6秒前
6秒前
鸟史发布了新的文献求助10
7秒前
哇哇哇哇发布了新的文献求助30
8秒前
Haoea发布了新的文献求助10
8秒前
胖头鱼发布了新的文献求助10
8秒前
小新完成签到 ,获得积分20
8秒前
Zx_1993应助念安采纳,获得20
8秒前
陶醉小笼包完成签到,获得积分10
9秒前
传奇3应助爱美丽采纳,获得10
9秒前
9秒前
吕嘉焓完成签到,获得积分10
9秒前
orixero应助huangyi采纳,获得10
9秒前
结实的问寒完成签到,获得积分20
10秒前
10秒前
10秒前
沉静的向秋完成签到,获得积分10
10秒前
wn发布了新的文献求助10
10秒前
大大彬发布了新的文献求助10
11秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239828
求助须知:如何正确求助?哪些是违规求助? 4407067
关于积分的说明 13717174
捐赠科研通 4275655
什么是DOI,文献DOI怎么找? 2346104
邀请新用户注册赠送积分活动 1343227
关于科研通互助平台的介绍 1301291