Prediction of leaf traits of lianas and trees via the integration of wavelet spectra in the visible-near infrared and thermal infrared domains

藤本植物 小波 偏最小二乘回归 天蓬 树(集合论) 主成分分析 遥感 小波变换 生物系统 数学 统计 植物 计算机科学 生物 人工智能 地质学 数学分析
作者
G. Arturo Sánchez-Azofeifa
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:259: 112406-112406 被引量:6
标识
DOI:10.1016/j.rse.2021.112406
摘要

Predicting leaf traits using models based on spectroscopic data can provide essential information to advance ecological research and future Earth system models. Most current models are based on Partial Least Squares Regression (PLSR) algorithms that attempt to predict a set of leaf traits of several plant groups using leaf spectra. However, PLSR models tend to be inconsistent in describing the importance of absorption features when used to predict leaf traits. Likewise, the effect of contrasting absorption features of different plant groups on the prediction and evaluation of PLSR models is not well understood. Hence, this study focuses on using wavelet spectra to overcome current PLSR's limitation and improve leaf trait predictions. Specifically, we explored the use of visible–near-infrared (0.45–1.0 μm) and mid- long-wave infrared spectra (2.55–11 μm) to predict three-leaf traits of lianas and trees: Leaf Mass Area (LMA), Water Content (WC), and Equivalent Water Thickness (EWT). We also compare the effect of life forms on the prediction of traits by using sun leaves collected from 14 liana species and 21 tree species ( n = 700) from a Neotropical Dry Forest. On each leaf, reflectance measurements were performed for both selected spectral regions; then, leaf traits were estimated from a leaf segment. Leaf reflectance was first resampled and then processed using continuous wavelet transformation (CWT) to derive the wavelet spectra. PLSR models linking the leaf traits and the reflectance or wavelet spectra were compared. Our results reveal that PLSR models based on wavelet spectra require fewer components to predict traits (13–16) than those based on reflectance (25–29). In addition, PLSR models' performance (e.g., R 2 ) of testing datasets tend to be higher for models based on wavelet spectra (LMA = 0.83; WC = 0.77; EWT = 0.68) than reflectance (LMA = 0.78; WC = 0.76; EWT = 0.49). Wavelet spectra models also seem to better characterize absorption features that drive the variability of leaf traits than models based on reflectance. However, life forms play an essential role in model performance, where the prediction of lianas' traits presenting lower R 2 ( R 2 = 0.61 ± 0.25) than trees' traits ( R 2 = 0.69 ± 0.15) regardless of the type of spectra or leaf trait. Our findings highlight the use of wavelet spectra to overcome limitations of the PLSR models for predicting leaf traits and the need to explore potential bias associated with plant groups on the model evaluations. • PLSR models based on reflectance and wavelet spectra were evaluated. • Models based on wavelet spectra improve the performance for predicting traits. • Trait prediction requires fewer components when wavelet spectra models are used. • Wavelet spectral models enhanced the importance of bands for predicting traits. • The performance of trait prediction differs between lianas and trees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助飘逸鸵鸟采纳,获得10
刚刚
neil完成签到,获得积分10
1秒前
欣喜电源完成签到,获得积分10
1秒前
1秒前
calm完成签到,获得积分10
1秒前
2秒前
3秒前
xiaxianong完成签到,获得积分10
3秒前
旦旦旦旦旦旦完成签到,获得积分10
4秒前
4秒前
哈哈哈发布了新的文献求助10
4秒前
4秒前
NAN完成签到,获得积分10
5秒前
5秒前
uilyang发布了新的文献求助30
5秒前
xiao双月完成签到,获得积分10
6秒前
6秒前
7秒前
木头羊发布了新的文献求助10
7秒前
7秒前
wangwei完成签到 ,获得积分10
7秒前
安南完成签到 ,获得积分10
7秒前
8秒前
ttrr完成签到,获得积分10
9秒前
zheng发布了新的文献求助10
9秒前
Jadedew完成签到,获得积分10
9秒前
JamesPei应助我迷了鹿采纳,获得10
9秒前
lx发布了新的文献求助30
10秒前
10秒前
ziyuixnshi发布了新的文献求助10
11秒前
11秒前
Ava应助demian采纳,获得10
11秒前
Tireastani应助刘四毛采纳,获得10
12秒前
ally完成签到,获得积分10
13秒前
搬砖的冰美式完成签到,获得积分10
13秒前
丞123完成签到,获得积分10
13秒前
大型海狮完成签到,获得积分10
14秒前
Hyh_发布了新的文献求助10
14秒前
天天快乐应助lzh采纳,获得10
15秒前
zpz发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582