Prediction of leaf traits of lianas and trees via the integration of wavelet spectra in the visible-near infrared and thermal infrared domains

藤本植物 小波 偏最小二乘回归 天蓬 树(集合论) 主成分分析 遥感 小波变换 生物系统 数学 统计 植物 计算机科学 生物 人工智能 地质学 数学分析
作者
G. Arturo Sánchez-Azofeifa
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:259: 112406-112406 被引量:6
标识
DOI:10.1016/j.rse.2021.112406
摘要

Predicting leaf traits using models based on spectroscopic data can provide essential information to advance ecological research and future Earth system models. Most current models are based on Partial Least Squares Regression (PLSR) algorithms that attempt to predict a set of leaf traits of several plant groups using leaf spectra. However, PLSR models tend to be inconsistent in describing the importance of absorption features when used to predict leaf traits. Likewise, the effect of contrasting absorption features of different plant groups on the prediction and evaluation of PLSR models is not well understood. Hence, this study focuses on using wavelet spectra to overcome current PLSR's limitation and improve leaf trait predictions. Specifically, we explored the use of visible–near-infrared (0.45–1.0 μm) and mid- long-wave infrared spectra (2.55–11 μm) to predict three-leaf traits of lianas and trees: Leaf Mass Area (LMA), Water Content (WC), and Equivalent Water Thickness (EWT). We also compare the effect of life forms on the prediction of traits by using sun leaves collected from 14 liana species and 21 tree species ( n = 700) from a Neotropical Dry Forest. On each leaf, reflectance measurements were performed for both selected spectral regions; then, leaf traits were estimated from a leaf segment. Leaf reflectance was first resampled and then processed using continuous wavelet transformation (CWT) to derive the wavelet spectra. PLSR models linking the leaf traits and the reflectance or wavelet spectra were compared. Our results reveal that PLSR models based on wavelet spectra require fewer components to predict traits (13–16) than those based on reflectance (25–29). In addition, PLSR models' performance (e.g., R 2 ) of testing datasets tend to be higher for models based on wavelet spectra (LMA = 0.83; WC = 0.77; EWT = 0.68) than reflectance (LMA = 0.78; WC = 0.76; EWT = 0.49). Wavelet spectra models also seem to better characterize absorption features that drive the variability of leaf traits than models based on reflectance. However, life forms play an essential role in model performance, where the prediction of lianas' traits presenting lower R 2 ( R 2 = 0.61 ± 0.25) than trees' traits ( R 2 = 0.69 ± 0.15) regardless of the type of spectra or leaf trait. Our findings highlight the use of wavelet spectra to overcome limitations of the PLSR models for predicting leaf traits and the need to explore potential bias associated with plant groups on the model evaluations. • PLSR models based on reflectance and wavelet spectra were evaluated. • Models based on wavelet spectra improve the performance for predicting traits. • Trait prediction requires fewer components when wavelet spectra models are used. • Wavelet spectral models enhanced the importance of bands for predicting traits. • The performance of trait prediction differs between lianas and trees.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
王帅发布了新的文献求助10
3秒前
危机的绯发布了新的文献求助10
3秒前
鱼鱼完成签到,获得积分10
3秒前
希望天下0贩的0应助lym54采纳,获得10
3秒前
科研通AI6应助木子采纳,获得10
3秒前
3秒前
4秒前
愉快的海完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
Azyyyy完成签到,获得积分10
8秒前
充电宝应助吃薯条采纳,获得10
8秒前
迅速斑马完成签到,获得积分10
8秒前
尔池完成签到,获得积分10
9秒前
nuonuo发布了新的文献求助10
9秒前
XZB完成签到,获得积分10
9秒前
陈砍砍完成签到 ,获得积分10
10秒前
10秒前
愉快的海发布了新的文献求助10
11秒前
11秒前
万海发布了新的文献求助10
12秒前
周山山完成签到 ,获得积分10
12秒前
ming完成签到 ,获得积分10
13秒前
无花果应助liyukun采纳,获得10
13秒前
13秒前
orixero应助紧张的毛衣采纳,获得10
14秒前
George发布了新的文献求助10
15秒前
CipherSage应助yxdjzwx采纳,获得20
17秒前
小富婆完成签到,获得积分10
17秒前
17秒前
pjson15376449841完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
深情安青应助章半仙采纳,获得10
20秒前
20秒前
doctor小陈发布了新的文献求助10
20秒前
科目三应助高兴的万宝路采纳,获得10
21秒前
乐乐应助顾文采纳,获得10
21秒前
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812