清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of leaf traits of lianas and trees via the integration of wavelet spectra in the visible-near infrared and thermal infrared domains

藤本植物 小波 偏最小二乘回归 天蓬 树(集合论) 主成分分析 遥感 小波变换 生物系统 数学 统计 植物 计算机科学 生物 人工智能 地质学 数学分析
作者
G. Arturo Sánchez-Azofeifa
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:259: 112406-112406 被引量:6
标识
DOI:10.1016/j.rse.2021.112406
摘要

Predicting leaf traits using models based on spectroscopic data can provide essential information to advance ecological research and future Earth system models. Most current models are based on Partial Least Squares Regression (PLSR) algorithms that attempt to predict a set of leaf traits of several plant groups using leaf spectra. However, PLSR models tend to be inconsistent in describing the importance of absorption features when used to predict leaf traits. Likewise, the effect of contrasting absorption features of different plant groups on the prediction and evaluation of PLSR models is not well understood. Hence, this study focuses on using wavelet spectra to overcome current PLSR's limitation and improve leaf trait predictions. Specifically, we explored the use of visible–near-infrared (0.45–1.0 μm) and mid- long-wave infrared spectra (2.55–11 μm) to predict three-leaf traits of lianas and trees: Leaf Mass Area (LMA), Water Content (WC), and Equivalent Water Thickness (EWT). We also compare the effect of life forms on the prediction of traits by using sun leaves collected from 14 liana species and 21 tree species ( n = 700) from a Neotropical Dry Forest. On each leaf, reflectance measurements were performed for both selected spectral regions; then, leaf traits were estimated from a leaf segment. Leaf reflectance was first resampled and then processed using continuous wavelet transformation (CWT) to derive the wavelet spectra. PLSR models linking the leaf traits and the reflectance or wavelet spectra were compared. Our results reveal that PLSR models based on wavelet spectra require fewer components to predict traits (13–16) than those based on reflectance (25–29). In addition, PLSR models' performance (e.g., R 2 ) of testing datasets tend to be higher for models based on wavelet spectra (LMA = 0.83; WC = 0.77; EWT = 0.68) than reflectance (LMA = 0.78; WC = 0.76; EWT = 0.49). Wavelet spectra models also seem to better characterize absorption features that drive the variability of leaf traits than models based on reflectance. However, life forms play an essential role in model performance, where the prediction of lianas' traits presenting lower R 2 ( R 2 = 0.61 ± 0.25) than trees' traits ( R 2 = 0.69 ± 0.15) regardless of the type of spectra or leaf trait. Our findings highlight the use of wavelet spectra to overcome limitations of the PLSR models for predicting leaf traits and the need to explore potential bias associated with plant groups on the model evaluations. • PLSR models based on reflectance and wavelet spectra were evaluated. • Models based on wavelet spectra improve the performance for predicting traits. • Trait prediction requires fewer components when wavelet spectra models are used. • Wavelet spectral models enhanced the importance of bands for predicting traits. • The performance of trait prediction differs between lianas and trees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单的笑蓝完成签到 ,获得积分10
2秒前
Maolin完成签到 ,获得积分10
4秒前
房天川完成签到 ,获得积分10
7秒前
wyh295352318完成签到 ,获得积分10
19秒前
yxq完成签到 ,获得积分10
24秒前
科研通AI2S应助古炮采纳,获得10
31秒前
wx1完成签到 ,获得积分0
36秒前
南风完成签到 ,获得积分10
40秒前
尔信完成签到 ,获得积分10
41秒前
46秒前
aixiaoming0503完成签到,获得积分10
47秒前
假萌完成签到,获得积分10
47秒前
牧长一完成签到 ,获得积分0
55秒前
gmc完成签到 ,获得积分10
55秒前
平凡世界完成签到 ,获得积分10
58秒前
科研狗完成签到 ,获得积分10
58秒前
英喆完成签到 ,获得积分10
1分钟前
Regina完成签到 ,获得积分10
1分钟前
呆萌觅珍完成签到,获得积分20
1分钟前
左丘映易完成签到,获得积分0
1分钟前
滕皓轩发布了新的文献求助10
1分钟前
jfc完成签到 ,获得积分10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
xianyaoz完成签到 ,获得积分10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
研友_08oa3n完成签到 ,获得积分10
1分钟前
herpes完成签到 ,获得积分0
1分钟前
滕皓轩发布了新的文献求助10
1分钟前
古炮完成签到,获得积分10
1分钟前
Panini完成签到 ,获得积分10
2分钟前
看见了紫荆花完成签到 ,获得积分10
2分钟前
mito完成签到,获得积分10
2分钟前
victory_liu完成签到,获得积分10
2分钟前
淞淞于我完成签到 ,获得积分10
2分钟前
科研通AI2S应助思如泉涌采纳,获得10
2分钟前
lixiang完成签到 ,获得积分10
2分钟前
WLY完成签到 ,获得积分10
3分钟前
大生蚝完成签到 ,获得积分10
3分钟前
子月之路完成签到,获得积分10
3分钟前
naczx完成签到,获得积分0
3分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229761
求助须知:如何正确求助?哪些是违规求助? 2877260
关于积分的说明 8198668
捐赠科研通 2544754
什么是DOI,文献DOI怎么找? 1374645
科研通“疑难数据库(出版商)”最低求助积分说明 647024
邀请新用户注册赠送积分活动 621851