Prediction of leaf traits of lianas and trees via the integration of wavelet spectra in the visible-near infrared and thermal infrared domains

藤本植物 小波 偏最小二乘回归 天蓬 树(集合论) 主成分分析 遥感 小波变换 生物系统 数学 统计 植物 计算机科学 生物 人工智能 地质学 数学分析
作者
G. Arturo Sánchez-Azofeifa
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:259: 112406-112406 被引量:6
标识
DOI:10.1016/j.rse.2021.112406
摘要

Predicting leaf traits using models based on spectroscopic data can provide essential information to advance ecological research and future Earth system models. Most current models are based on Partial Least Squares Regression (PLSR) algorithms that attempt to predict a set of leaf traits of several plant groups using leaf spectra. However, PLSR models tend to be inconsistent in describing the importance of absorption features when used to predict leaf traits. Likewise, the effect of contrasting absorption features of different plant groups on the prediction and evaluation of PLSR models is not well understood. Hence, this study focuses on using wavelet spectra to overcome current PLSR's limitation and improve leaf trait predictions. Specifically, we explored the use of visible–near-infrared (0.45–1.0 μm) and mid- long-wave infrared spectra (2.55–11 μm) to predict three-leaf traits of lianas and trees: Leaf Mass Area (LMA), Water Content (WC), and Equivalent Water Thickness (EWT). We also compare the effect of life forms on the prediction of traits by using sun leaves collected from 14 liana species and 21 tree species ( n = 700) from a Neotropical Dry Forest. On each leaf, reflectance measurements were performed for both selected spectral regions; then, leaf traits were estimated from a leaf segment. Leaf reflectance was first resampled and then processed using continuous wavelet transformation (CWT) to derive the wavelet spectra. PLSR models linking the leaf traits and the reflectance or wavelet spectra were compared. Our results reveal that PLSR models based on wavelet spectra require fewer components to predict traits (13–16) than those based on reflectance (25–29). In addition, PLSR models' performance (e.g., R 2 ) of testing datasets tend to be higher for models based on wavelet spectra (LMA = 0.83; WC = 0.77; EWT = 0.68) than reflectance (LMA = 0.78; WC = 0.76; EWT = 0.49). Wavelet spectra models also seem to better characterize absorption features that drive the variability of leaf traits than models based on reflectance. However, life forms play an essential role in model performance, where the prediction of lianas' traits presenting lower R 2 ( R 2 = 0.61 ± 0.25) than trees' traits ( R 2 = 0.69 ± 0.15) regardless of the type of spectra or leaf trait. Our findings highlight the use of wavelet spectra to overcome limitations of the PLSR models for predicting leaf traits and the need to explore potential bias associated with plant groups on the model evaluations. • PLSR models based on reflectance and wavelet spectra were evaluated. • Models based on wavelet spectra improve the performance for predicting traits. • Trait prediction requires fewer components when wavelet spectra models are used. • Wavelet spectral models enhanced the importance of bands for predicting traits. • The performance of trait prediction differs between lianas and trees.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧吐司完成签到,获得积分10
刚刚
1秒前
IceShock完成签到,获得积分10
1秒前
白蒲桃完成签到 ,获得积分10
1秒前
炙热面包完成签到,获得积分20
1秒前
大胆的如凡完成签到,获得积分10
2秒前
3秒前
你怎么睡得着觉完成签到,获得积分10
3秒前
可爱的函函应助Mrsummer采纳,获得10
3秒前
4秒前
Atopos发布了新的文献求助10
4秒前
ZFY关闭了ZFY文献求助
4秒前
4秒前
支安白发布了新的文献求助10
5秒前
5秒前
炙热面包发布了新的文献求助20
5秒前
5秒前
苏silence发布了新的文献求助10
5秒前
张锐斌完成签到,获得积分10
5秒前
594778089完成签到,获得积分20
5秒前
豆包完成签到,获得积分10
5秒前
shan完成签到,获得积分10
6秒前
Owen应助缥缈的青旋采纳,获得10
6秒前
dadabad完成签到 ,获得积分10
6秒前
凝若霜晨发布了新的文献求助10
6秒前
如常完成签到,获得积分10
8秒前
要奋斗的小番茄完成签到,获得积分10
8秒前
苻人英完成签到,获得积分10
8秒前
dr1nk完成签到,获得积分10
8秒前
8秒前
Lucas应助豆包采纳,获得10
8秒前
zmz完成签到,获得积分10
9秒前
9秒前
9秒前
594778089发布了新的文献求助10
9秒前
BIANYAN发布了新的文献求助10
10秒前
大白完成签到,获得积分10
10秒前
yangdann完成签到,获得积分10
10秒前
无奈凡波完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005