抗药性
结核分枝杆菌
生物
rpoB公司
基因组
遗传学
全基因组测序
基因型
基因
肺结核
微生物学
医学
病理
作者
Jaciara Diniz,Andréa von Groll,Gisela Unis,Elis R. Dalla-Costa,Maria Lúcia Rosa Rossetti,Júlia Silveira Vianna,Daniela Fernandes Ramos,Ana Júlia Reis,Priscila Cristina Bartolomeu Halicki,João L. Scaini,Yasmin Castillos de Ibrahim das Neves,Jody Phelan,Ana Gomes,Susana Campino,Karina Machado,Adriano Velasque Werhli,Arnab Pain,Taane G. Clark,João Perdigão,Miguel Viveiros,Isabel Portugal,Pedro Eduardo Almeida da Silva
出处
期刊:Tuberculosis
[Elsevier]
日期:2021-12-01
卷期号:131: 102137-102137
被引量:3
标识
DOI:10.1016/j.tube.2021.102137
摘要
Treatment of drug-resistant tuberculosis requires extended use of more toxic and less effective drugs and may result in retreatment cases due to failure, abandonment or disease recurrence. It is therefore important to understand the evolutionary process of drug resistance in Mycobacterium tuberculosis. We here in describe the microevolution of drug resistance in serial isolates from six previously treated patients. Drug resistance was initially investigated through phenotypic methods, followed by genotypic approaches. The use of whole-genome sequencing allowed the identification of mutations in the katG, rpsL and rpoB genes associated with drug resistance, including the detection of rare mutations in katG and mixed populations of strains. Molecular docking simulation studies of the impact of observed mutations on isoniazid binding were also performed. Whole-genome sequencing detected 266 single nucleotide polymorphisms between two isolates obtained from one patient, suggesting a case of exogenous reinfection. In conclusion, sequencing technologies can detect rare mutations related to drug resistance, identify subpopulations of resistant strains, and identify diverse populations of strains due to exogenous reinfection, thus improving tuberculosis control by guiding early implementation of appropriate clinical and therapeutic interventions.
科研通智能强力驱动
Strongly Powered by AbleSci AI