LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales

Python(编程语言) 计算机科学 Fortran语言 计算科学 分子动力学 原子模型 灵活性(工程) 源代码 巨量平行 程序设计语言 并行计算 物理 数学 量子力学 统计
作者
Aidan P. Thompson,Hasan Metin Aktulga,Richard A. Berger,Dan Bolintineanu,William M. Brown,Paul Crozier,Pieter J. in ’t Veld,Axel Kohlmeyer,Stan Moore,Trung Dac Nguyen,Ray Shan,Mark J. Stevens,Julien Tranchida,Christian Robert Trott,Steven J. Plimpton
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:271: 108171-108171 被引量:6977
标识
DOI:10.1016/j.cpc.2021.108171
摘要

Since the classical molecular dynamics simulator LAMMPS was released as an open source code in 2004, it has become a widely-used tool for particle-based modeling of materials at length scales ranging from atomic to mesoscale to continuum. Reasons for its popularity are that it provides a wide variety of particle interaction models for different materials, that it runs on any platform from a single CPU core to the largest supercomputers with accelerators, and that it gives users control over simulation details, either via the input script or by adding code for new interatomic potentials, constraints, diagnostics, or other features needed for their models. As a result, hundreds of people have contributed new capabilities to LAMMPS and it has grown from fifty thousand lines of code in 2004 to a million lines today. In this paper several of the fundamental algorithms used in LAMMPS are described along with the design strategies which have made it flexible for both users and developers. We also highlight some capabilities recently added to the code which were enabled by this flexibility, including dynamic load balancing, on-the-fly visualization, magnetic spin dynamics models, and quantum-accuracy machine learning interatomic potentials. Program Title: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) CPC Library link to program files: https://doi.org/10.17632/cxbxs9btsv.1 Developer's repository link: https://github.com/lammps/lammps Licensing provisions: GPLv2 Programming language: C++, Python, C, Fortran Supplementary material: https://www.lammps.org Nature of problem: Many science applications in physics, chemistry, materials science, and related fields require parallel, scalable, and efficient generation of long, stable classical particle dynamics trajectories. Within this common problem definition, there lies a great diversity of use cases, distinguished by different particle interaction models, external constraints, as well as timescales and lengthscales ranging from atomic to mesoscale to macroscopic. Solution method: The LAMMPS code uses parallel spatial decomposition, distributed neighbor lists, and parallel FFTs for long-range Coulombic interactions [1]. The time integration algorithm is based on the Størmer-Verlet symplectic integrator [2], which provides better stability than higher-order non-symplectic methods. In addition, LAMMPS supports a wide range of interatomic potentials, constraints, diagnostics, software interfaces, and pre- and post-processing features. Additional comments including restrictions and unusual features: This paper serves as the definitive reference for the LAMMPS code. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117 (1995) 1–19. L. Verlet, Computer experiments on classical fluids: I. Thermodynamical properties of Lennard–Jones molecules, Phys. Rev. 159 (1967) 98–103.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搞怪凡波完成签到,获得积分10
刚刚
111完成签到 ,获得积分10
1秒前
昊康好完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
Brooks完成签到,获得积分10
2秒前
许诺完成签到,获得积分10
2秒前
甜蜜绿蓉发布了新的文献求助10
2秒前
上官若男应助少年愁采纳,获得10
2秒前
ly完成签到,获得积分10
3秒前
LXG666完成签到,获得积分10
3秒前
科研通AI2S应助瓦罐采纳,获得10
3秒前
QYY完成签到,获得积分10
3秒前
学术牛马完成签到,获得积分10
3秒前
NexusExplorer应助背后幻波采纳,获得10
3秒前
轻松的鸿煊完成签到 ,获得积分10
4秒前
4秒前
星辉完成签到,获得积分10
4秒前
端庄白秋发布了新的文献求助10
5秒前
笨笨棒球应助roking采纳,获得50
5秒前
ybwei2008_163发布了新的文献求助10
5秒前
万坤完成签到,获得积分10
6秒前
抹茶夏天完成签到,获得积分10
6秒前
xxxxx完成签到,获得积分10
6秒前
111完成签到 ,获得积分10
6秒前
秣旎完成签到,获得积分10
6秒前
pluto应助许子健采纳,获得10
7秒前
上下完成签到 ,获得积分10
7秒前
iNk应助许子健采纳,获得10
7秒前
YifanWang应助许子健采纳,获得10
7秒前
7秒前
科研通AI2S应助daxiong采纳,获得10
8秒前
一人完成签到,获得积分10
8秒前
mayucong完成签到,获得积分10
9秒前
yellow完成签到 ,获得积分10
9秒前
zhou完成签到,获得积分10
10秒前
元66666完成签到 ,获得积分10
10秒前
jane完成签到 ,获得积分10
11秒前
一个千年猪妖完成签到,获得积分20
12秒前
Ly完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499089
关于积分的说明 11093922
捐赠科研通 3229669
什么是DOI,文献DOI怎么找? 1785711
邀请新用户注册赠送积分活动 869476
科研通“疑难数据库(出版商)”最低求助积分说明 801478