LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales

Python(编程语言) 计算机科学 Fortran语言 计算科学 分子动力学 原子模型 灵活性(工程) 源代码 巨量平行 程序设计语言 并行计算 物理 数学 量子力学 统计
作者
Aidan P. Thompson,Hasan Metin Aktulga,Richard A. Berger,Dan Bolintineanu,William M. Brown,Paul Crozier,Pieter J. in ’t Veld,Axel Kohlmeyer,Stan Moore,Trung Dac Nguyen,Ray Shan,Mark J. Stevens,Julien Tranchida,Christian Robert Trott,Steven J. Plimpton
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:271: 108171-108171 被引量:6025
标识
DOI:10.1016/j.cpc.2021.108171
摘要

Since the classical molecular dynamics simulator LAMMPS was released as an open source code in 2004, it has become a widely-used tool for particle-based modeling of materials at length scales ranging from atomic to mesoscale to continuum. Reasons for its popularity are that it provides a wide variety of particle interaction models for different materials, that it runs on any platform from a single CPU core to the largest supercomputers with accelerators, and that it gives users control over simulation details, either via the input script or by adding code for new interatomic potentials, constraints, diagnostics, or other features needed for their models. As a result, hundreds of people have contributed new capabilities to LAMMPS and it has grown from fifty thousand lines of code in 2004 to a million lines today. In this paper several of the fundamental algorithms used in LAMMPS are described along with the design strategies which have made it flexible for both users and developers. We also highlight some capabilities recently added to the code which were enabled by this flexibility, including dynamic load balancing, on-the-fly visualization, magnetic spin dynamics models, and quantum-accuracy machine learning interatomic potentials. Program Title: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) CPC Library link to program files: https://doi.org/10.17632/cxbxs9btsv.1 Developer's repository link: https://github.com/lammps/lammps Licensing provisions: GPLv2 Programming language: C++, Python, C, Fortran Supplementary material: https://www.lammps.org Nature of problem: Many science applications in physics, chemistry, materials science, and related fields require parallel, scalable, and efficient generation of long, stable classical particle dynamics trajectories. Within this common problem definition, there lies a great diversity of use cases, distinguished by different particle interaction models, external constraints, as well as timescales and lengthscales ranging from atomic to mesoscale to macroscopic. Solution method: The LAMMPS code uses parallel spatial decomposition, distributed neighbor lists, and parallel FFTs for long-range Coulombic interactions [1]. The time integration algorithm is based on the Størmer-Verlet symplectic integrator [2], which provides better stability than higher-order non-symplectic methods. In addition, LAMMPS supports a wide range of interatomic potentials, constraints, diagnostics, software interfaces, and pre- and post-processing features. Additional comments including restrictions and unusual features: This paper serves as the definitive reference for the LAMMPS code. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117 (1995) 1–19. L. Verlet, Computer experiments on classical fluids: I. Thermodynamical properties of Lennard–Jones molecules, Phys. Rev. 159 (1967) 98–103.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mian完成签到,获得积分10
刚刚
1秒前
1秒前
于嗣濠完成签到 ,获得积分10
1秒前
36456657应助CC采纳,获得10
1秒前
优雅山柏发布了新的文献求助10
2秒前
Jacky完成签到,获得积分10
2秒前
脑洞疼应助无情的白桃采纳,获得10
2秒前
mm发布了新的文献求助10
2秒前
3秒前
3秒前
zoko发布了新的文献求助10
3秒前
3秒前
曾经的臻发布了新的文献求助10
3秒前
华仔应助S1mple_gentleman采纳,获得10
3秒前
科研通AI5应助CC采纳,获得10
3秒前
3秒前
4秒前
4秒前
张静静完成签到,获得积分10
5秒前
5秒前
震666发布了新的文献求助30
5秒前
MADKAI发布了新的文献求助10
5秒前
5秒前
117发布了新的文献求助10
5秒前
6秒前
6秒前
酶没美镁完成签到,获得积分10
6秒前
小二郎应助Rui采纳,获得10
6秒前
Libra完成签到,获得积分10
7秒前
雪儿发布了新的文献求助30
7秒前
无悔呀发布了新的文献求助10
7秒前
小巧的可仁完成签到 ,获得积分10
7秒前
7秒前
zhao完成签到,获得积分10
8秒前
masu发布了新的文献求助10
8秒前
冷酷尔琴发布了新的文献求助10
9秒前
Ll发布了新的文献求助10
9秒前
优雅山柏完成签到,获得积分10
9秒前
XinyiZhang发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740