已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales

Python(编程语言) 计算机科学 Fortran语言 计算科学 分子动力学 原子模型 灵活性(工程) 源代码 巨量平行 程序设计语言 并行计算 物理 数学 量子力学 统计
作者
Aidan P. Thompson,Hasan Metin Aktulga,Richard A. Berger,Dan Bolintineanu,William M. Brown,Paul Crozier,Pieter J. in ’t Veld,Axel Kohlmeyer,Stan Moore,Trung Dac Nguyen,Ray Shan,Mark J. Stevens,Julien Tranchida,C. Müller,Steven J. Plimpton
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:271: 108171-108171 被引量:4846
标识
DOI:10.1016/j.cpc.2021.108171
摘要

Since the classical molecular dynamics simulator LAMMPS was released as an open source code in 2004, it has become a widely-used tool for particle-based modeling of materials at length scales ranging from atomic to mesoscale to continuum. Reasons for its popularity are that it provides a wide variety of particle interaction models for different materials, that it runs on any platform from a single CPU core to the largest supercomputers with accelerators, and that it gives users control over simulation details, either via the input script or by adding code for new interatomic potentials, constraints, diagnostics, or other features needed for their models. As a result, hundreds of people have contributed new capabilities to LAMMPS and it has grown from fifty thousand lines of code in 2004 to a million lines today. In this paper several of the fundamental algorithms used in LAMMPS are described along with the design strategies which have made it flexible for both users and developers. We also highlight some capabilities recently added to the code which were enabled by this flexibility, including dynamic load balancing, on-the-fly visualization, magnetic spin dynamics models, and quantum-accuracy machine learning interatomic potentials. Program Title: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) CPC Library link to program files: https://doi.org/10.17632/cxbxs9btsv.1 Developer's repository link: https://github.com/lammps/lammps Licensing provisions: GPLv2 Programming language: C++, Python, C, Fortran Supplementary material: https://www.lammps.org Nature of problem: Many science applications in physics, chemistry, materials science, and related fields require parallel, scalable, and efficient generation of long, stable classical particle dynamics trajectories. Within this common problem definition, there lies a great diversity of use cases, distinguished by different particle interaction models, external constraints, as well as timescales and lengthscales ranging from atomic to mesoscale to macroscopic. Solution method: The LAMMPS code uses parallel spatial decomposition, distributed neighbor lists, and parallel FFTs for long-range Coulombic interactions [1]. The time integration algorithm is based on the Størmer-Verlet symplectic integrator [2], which provides better stability than higher-order non-symplectic methods. In addition, LAMMPS supports a wide range of interatomic potentials, constraints, diagnostics, software interfaces, and pre- and post-processing features. Additional comments including restrictions and unusual features: This paper serves as the definitive reference for the LAMMPS code. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117 (1995) 1–19. L. Verlet, Computer experiments on classical fluids: I. Thermodynamical properties of Lennard–Jones molecules, Phys. Rev. 159 (1967) 98–103.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霅霅完成签到,获得积分10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
景辣条应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI2S应助现代的邑采纳,获得10
6秒前
科研通AI2S应助小小鱼采纳,获得10
8秒前
9秒前
14秒前
17秒前
小鱼发布了新的文献求助10
19秒前
20秒前
积极的香菇完成签到 ,获得积分10
20秒前
andy发布了新的文献求助10
21秒前
Thh发布了新的文献求助10
23秒前
24秒前
26秒前
852应助Sooinlee采纳,获得30
26秒前
务实飞丹完成签到,获得积分20
27秒前
范礼运20810完成签到 ,获得积分10
27秒前
乔达摩悉达多完成签到 ,获得积分10
28秒前
29秒前
852应助andy采纳,获得10
30秒前
十七完成签到 ,获得积分10
31秒前
海豚音521033完成签到,获得积分10
31秒前
大个应助优美的背包采纳,获得10
34秒前
情怀应助谷歌采纳,获得10
34秒前
35秒前
YEFEIeee完成签到 ,获得积分10
39秒前
Yingyii完成签到,获得积分10
39秒前
40秒前
老肖应助小鱼采纳,获得10
40秒前
不安红豆发布了新的文献求助10
41秒前
43秒前
nav完成签到 ,获得积分10
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136896
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783548
捐赠科研通 2443945
什么是DOI,文献DOI怎么找? 1299509
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954