A review on modern defect detection models using DCNNs – Deep convolutional neural networks

计算机科学 卷积神经网络 软件可移植性 深度学习 人工智能 标杆管理 目标检测 机器学习 计算机工程 模式识别(心理学) 业务 营销 程序设计语言
作者
Tulbure Andrei-Alexandru,Tulbure Adrian-Alexandru,Eva H. Dulf
出处
期刊:Journal of Advanced Research [Elsevier]
卷期号:35: 33-48 被引量:164
标识
DOI:10.1016/j.jare.2021.03.015
摘要

Over the last years Deep Learning has shown to yield remarkable results when compared to traditional computer vision algorithms, in a large variety of computer vision applications. The deeplearning models outperformed in both accuracy and processing time. Thus, once a deeplearning models won the Image Net Large Scale Visual Recognition Contest, it proved that this area of research is of great potential. Furthermore, these increases in recognition performance resulted in more applied research and thus, more applications where deeplearning is useful: one of which is defect detection (or visual defect detection). In the last few years, deeplearning models achieved higher and higher accuracy on the complex testing datasets used for benchmarking. This surge in accuracy and usage is also supported (besides swarms of researchers pouring into the race), by incremental breakthroughs in computing hardware: such as more powerful GPUs(Graphical processing units), CPUs(central processing units) and better computing procedures (libraries and frameworks).To offer a structured and analytical overview(stating both advantages and disadvantages) of the existing popular object detection models that can be re-purposed for defect detection: such as Region based CNNs(Convolutional neural networks), YOLO(You only look once), SSD(single shot detectors) and cascaded architectures. A further brief summary on model compression and acceleration techniques that enabled the portability of deeplearning detection models is included.It is of great use for future developments in the manufacturing industry that many of the popular, above mentioned models are easy to re-purpose for defect detection and, thus could really contribute to the overall increase in productivity of this sector. Moreover, in the experiment performed the YOLOv4 model was trained and re-purposed for industrial cable detection in several hours. The computing needs could be fulfilled by a general purpose computer or by a high-performance desktop setup, depending on the specificity of the application. Hence, the barrier of computing shall be somewhat easier to climb for all types of businesses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待的金毛完成签到,获得积分10
刚刚
刚刚
zhy关闭了zhy文献求助
1秒前
小啦啦3082发布了新的文献求助10
2秒前
完美世界应助刘璇1采纳,获得10
2秒前
Hello应助小付采纳,获得10
2秒前
3秒前
3秒前
橘络发布了新的文献求助10
3秒前
4秒前
一期一会发布了新的文献求助10
5秒前
5秒前
滚去看书关注了科研通微信公众号
6秒前
浔城游侠完成签到,获得积分10
7秒前
atom完成签到,获得积分10
7秒前
7秒前
ASDS完成签到,获得积分10
8秒前
8秒前
8秒前
qzj发布了新的文献求助10
9秒前
小付完成签到,获得积分20
10秒前
XLT完成签到,获得积分20
10秒前
noamin发布了新的文献求助20
11秒前
12秒前
sui完成签到,获得积分10
12秒前
停停走走发布了新的文献求助10
13秒前
称心太阳发布了新的文献求助10
13秒前
张奎应助大大豆腐干采纳,获得10
13秒前
15秒前
拼搏亦松完成签到,获得积分10
15秒前
XLT发布了新的文献求助10
15秒前
可爱的函函应助SSScome采纳,获得10
15秒前
15秒前
聪慧糖豆完成签到 ,获得积分10
15秒前
17秒前
一期一会完成签到,获得积分20
18秒前
18秒前
zhangscience发布了新的文献求助10
20秒前
20秒前
大大豆腐干完成签到,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589