A review on modern defect detection models using DCNNs – Deep convolutional neural networks

计算机科学 卷积神经网络 软件可移植性 深度学习 人工智能 标杆管理 目标检测 机器学习 计算机工程 模式识别(心理学) 业务 营销 程序设计语言
作者
Tulbure Andrei-Alexandru,Tulbure Adrian-Alexandru,Eva H. Dulf
出处
期刊:Journal of Advanced Research [Elsevier BV]
卷期号:35: 33-48 被引量:164
标识
DOI:10.1016/j.jare.2021.03.015
摘要

Over the last years Deep Learning has shown to yield remarkable results when compared to traditional computer vision algorithms, in a large variety of computer vision applications. The deeplearning models outperformed in both accuracy and processing time. Thus, once a deeplearning models won the Image Net Large Scale Visual Recognition Contest, it proved that this area of research is of great potential. Furthermore, these increases in recognition performance resulted in more applied research and thus, more applications where deeplearning is useful: one of which is defect detection (or visual defect detection). In the last few years, deeplearning models achieved higher and higher accuracy on the complex testing datasets used for benchmarking. This surge in accuracy and usage is also supported (besides swarms of researchers pouring into the race), by incremental breakthroughs in computing hardware: such as more powerful GPUs(Graphical processing units), CPUs(central processing units) and better computing procedures (libraries and frameworks).To offer a structured and analytical overview(stating both advantages and disadvantages) of the existing popular object detection models that can be re-purposed for defect detection: such as Region based CNNs(Convolutional neural networks), YOLO(You only look once), SSD(single shot detectors) and cascaded architectures. A further brief summary on model compression and acceleration techniques that enabled the portability of deeplearning detection models is included.It is of great use for future developments in the manufacturing industry that many of the popular, above mentioned models are easy to re-purpose for defect detection and, thus could really contribute to the overall increase in productivity of this sector. Moreover, in the experiment performed the YOLOv4 model was trained and re-purposed for industrial cable detection in several hours. The computing needs could be fulfilled by a general purpose computer or by a high-performance desktop setup, depending on the specificity of the application. Hence, the barrier of computing shall be somewhat easier to climb for all types of businesses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听曲散步完成签到,获得积分10
刚刚
刚刚
游舒平发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
BCS完成签到,获得积分10
3秒前
大模型应助独特的莫言采纳,获得10
3秒前
函花花发布了新的文献求助10
4秒前
4秒前
6秒前
发一篇Nature完成签到 ,获得积分10
6秒前
秦摆烂发布了新的文献求助10
7秒前
Ava应助陆千万采纳,获得10
8秒前
jxm发布了新的文献求助10
8秒前
lym97完成签到 ,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
ED应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
ED应助科研通管家采纳,获得10
12秒前
卡卡西应助科研通管家采纳,获得20
12秒前
利利应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得30
12秒前
yookia应助科研通管家采纳,获得10
12秒前
ED应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
深情安青应助CCR采纳,获得10
13秒前
14秒前
唠叨的无极完成签到 ,获得积分10
15秒前
15秒前
16秒前
17秒前
搁浅完成签到,获得积分10
17秒前
18秒前
橘子sungua发布了新的文献求助10
19秒前
jiang完成签到 ,获得积分10
20秒前
20秒前
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150