已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A review on modern defect detection models using DCNNs – Deep convolutional neural networks

计算机科学 卷积神经网络 软件可移植性 深度学习 人工智能 标杆管理 目标检测 机器学习 计算机工程 模式识别(心理学) 营销 业务 程序设计语言
作者
Tulbure Andrei-Alexandru,Tulbure Adrian-Alexandru,Eva H. Dulf
出处
期刊:Journal of Advanced Research [Elsevier]
卷期号:35: 33-48 被引量:305
标识
DOI:10.1016/j.jare.2021.03.015
摘要

Over the last years Deep Learning has shown to yield remarkable results when compared to traditional computer vision algorithms, in a large variety of computer vision applications. The deeplearning models outperformed in both accuracy and processing time. Thus, once a deeplearning models won the Image Net Large Scale Visual Recognition Contest, it proved that this area of research is of great potential. Furthermore, these increases in recognition performance resulted in more applied research and thus, more applications where deeplearning is useful: one of which is defect detection (or visual defect detection). In the last few years, deeplearning models achieved higher and higher accuracy on the complex testing datasets used for benchmarking. This surge in accuracy and usage is also supported (besides swarms of researchers pouring into the race), by incremental breakthroughs in computing hardware: such as more powerful GPUs(Graphical processing units), CPUs(central processing units) and better computing procedures (libraries and frameworks). To offer a structured and analytical overview(stating both advantages and disadvantages) of the existing popular object detection models that can be re-purposed for defect detection: such as Region based CNNs(Convolutional neural networks), YOLO(You only look once), SSD(single shot detectors) and cascaded architectures. A further brief summary on model compression and acceleration techniques that enabled the portability of deeplearning detection models is included. It is of great use for future developments in the manufacturing industry that many of the popular, above mentioned models are easy to re-purpose for defect detection and, thus could really contribute to the overall increase in productivity of this sector. Moreover, in the experiment performed the YOLOv4 model was trained and re-purposed for industrial cable detection in several hours. The computing needs could be fulfilled by a general purpose computer or by a high-performance desktop setup, depending on the specificity of the application. Hence, the barrier of computing shall be somewhat easier to climb for all types of businesses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佩吉完成签到 ,获得积分10
刚刚
刚刚
xyj发布了新的文献求助10
2秒前
1112131345发布了新的文献求助10
2秒前
kingsea发布了新的文献求助10
2秒前
乐乐应助hvgjgfjhgjh采纳,获得10
3秒前
fantianhui完成签到 ,获得积分10
3秒前
呵呵完成签到,获得积分10
4秒前
sulin完成签到 ,获得积分10
4秒前
4秒前
优雅山柏发布了新的文献求助10
6秒前
Cc完成签到 ,获得积分10
6秒前
Wsyyy完成签到 ,获得积分10
8秒前
Yikao完成签到 ,获得积分10
9秒前
10秒前
10秒前
番茄鱼完成签到 ,获得积分10
10秒前
考拉发布了新的文献求助10
11秒前
12秒前
洛城完成签到,获得积分10
13秒前
usora发布了新的文献求助10
15秒前
hvgjgfjhgjh发布了新的文献求助10
15秒前
xie发布了新的文献求助10
17秒前
YifanWang应助1461644768采纳,获得10
17秒前
深情安青应助xixixi采纳,获得10
18秒前
19秒前
考拉完成签到 ,获得积分10
24秒前
儒飞完成签到,获得积分10
26秒前
QingFeng完成签到,获得积分10
27秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
30秒前
hx完成签到 ,获得积分10
32秒前
Dream7完成签到 ,获得积分10
32秒前
usora完成签到,获得积分10
34秒前
zyy发布了新的文献求助10
35秒前
科研王完成签到 ,获得积分10
36秒前
sy发布了新的文献求助10
37秒前
Xiaoping完成签到 ,获得积分10
41秒前
科研小虫完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681075
求助须知:如何正确求助?哪些是违规求助? 5003997
关于积分的说明 15174789
捐赠科研通 4840762
什么是DOI,文献DOI怎么找? 2594411
邀请新用户注册赠送积分活动 1547531
关于科研通互助平台的介绍 1505468