A review on modern defect detection models using DCNNs – Deep convolutional neural networks

计算机科学 卷积神经网络 软件可移植性 深度学习 人工智能 标杆管理 目标检测 机器学习 计算机工程 模式识别(心理学) 营销 业务 程序设计语言
作者
Tulbure Andrei-Alexandru,Tulbure Adrian-Alexandru,Eva H. Dulf
出处
期刊:Journal of Advanced Research [Elsevier BV]
卷期号:35: 33-48 被引量:231
标识
DOI:10.1016/j.jare.2021.03.015
摘要

Over the last years Deep Learning has shown to yield remarkable results when compared to traditional computer vision algorithms, in a large variety of computer vision applications. The deeplearning models outperformed in both accuracy and processing time. Thus, once a deeplearning models won the Image Net Large Scale Visual Recognition Contest, it proved that this area of research is of great potential. Furthermore, these increases in recognition performance resulted in more applied research and thus, more applications where deeplearning is useful: one of which is defect detection (or visual defect detection). In the last few years, deeplearning models achieved higher and higher accuracy on the complex testing datasets used for benchmarking. This surge in accuracy and usage is also supported (besides swarms of researchers pouring into the race), by incremental breakthroughs in computing hardware: such as more powerful GPUs(Graphical processing units), CPUs(central processing units) and better computing procedures (libraries and frameworks). To offer a structured and analytical overview(stating both advantages and disadvantages) of the existing popular object detection models that can be re-purposed for defect detection: such as Region based CNNs(Convolutional neural networks), YOLO(You only look once), SSD(single shot detectors) and cascaded architectures. A further brief summary on model compression and acceleration techniques that enabled the portability of deeplearning detection models is included. It is of great use for future developments in the manufacturing industry that many of the popular, above mentioned models are easy to re-purpose for defect detection and, thus could really contribute to the overall increase in productivity of this sector. Moreover, in the experiment performed the YOLOv4 model was trained and re-purposed for industrial cable detection in several hours. The computing needs could be fulfilled by a general purpose computer or by a high-performance desktop setup, depending on the specificity of the application. Hence, the barrier of computing shall be somewhat easier to climb for all types of businesses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fangxin完成签到,获得积分10
刚刚
高贵逍遥完成签到 ,获得积分10
1秒前
小HO完成签到,获得积分10
1秒前
Ray发布了新的文献求助10
3秒前
小灰灰发布了新的文献求助10
3秒前
坦率尔琴完成签到,获得积分10
5秒前
Min完成签到,获得积分10
6秒前
代纤绮完成签到,获得积分10
7秒前
gnil完成签到,获得积分10
7秒前
liuzhongyi完成签到,获得积分10
8秒前
kellen完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助20
10秒前
Silence完成签到 ,获得积分10
11秒前
ian完成签到,获得积分10
11秒前
狂野的友灵完成签到 ,获得积分10
13秒前
14秒前
thchiang发布了新的文献求助10
14秒前
要开心完成签到,获得积分10
15秒前
文静的白羊完成签到,获得积分10
15秒前
18秒前
我我我完成签到,获得积分10
20秒前
小西完成签到 ,获得积分10
21秒前
海洋球完成签到 ,获得积分10
21秒前
Liao完成签到,获得积分10
21秒前
oVUVo完成签到,获得积分10
21秒前
Adler完成签到,获得积分10
23秒前
会飞的生菜完成签到,获得积分10
24秒前
25秒前
liu发布了新的文献求助10
25秒前
善学以致用应助土豆采纳,获得10
26秒前
认真映真完成签到,获得积分10
26秒前
29秒前
Damon完成签到 ,获得积分10
30秒前
arisfield完成签到,获得积分10
30秒前
hhhhwl发布了新的文献求助10
31秒前
31秒前
33秒前
一丁点可爱完成签到,获得积分10
33秒前
lmz完成签到,获得积分10
33秒前
吃西瓜的维尼熊完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044838
求助须知:如何正确求助?哪些是违规求助? 4274315
关于积分的说明 13323674
捐赠科研通 4088088
什么是DOI,文献DOI怎么找? 2236731
邀请新用户注册赠送积分活动 1244114
关于科研通互助平台的介绍 1172128