A review on modern defect detection models using DCNNs – Deep convolutional neural networks

计算机科学 卷积神经网络 软件可移植性 深度学习 人工智能 标杆管理 目标检测 机器学习 计算机工程 模式识别(心理学) 营销 业务 程序设计语言
作者
Tulbure Andrei-Alexandru,Tulbure Adrian-Alexandru,Eva H. Dulf
出处
期刊:Journal of Advanced Research [Elsevier]
卷期号:35: 33-48 被引量:305
标识
DOI:10.1016/j.jare.2021.03.015
摘要

Over the last years Deep Learning has shown to yield remarkable results when compared to traditional computer vision algorithms, in a large variety of computer vision applications. The deeplearning models outperformed in both accuracy and processing time. Thus, once a deeplearning models won the Image Net Large Scale Visual Recognition Contest, it proved that this area of research is of great potential. Furthermore, these increases in recognition performance resulted in more applied research and thus, more applications where deeplearning is useful: one of which is defect detection (or visual defect detection). In the last few years, deeplearning models achieved higher and higher accuracy on the complex testing datasets used for benchmarking. This surge in accuracy and usage is also supported (besides swarms of researchers pouring into the race), by incremental breakthroughs in computing hardware: such as more powerful GPUs(Graphical processing units), CPUs(central processing units) and better computing procedures (libraries and frameworks). To offer a structured and analytical overview(stating both advantages and disadvantages) of the existing popular object detection models that can be re-purposed for defect detection: such as Region based CNNs(Convolutional neural networks), YOLO(You only look once), SSD(single shot detectors) and cascaded architectures. A further brief summary on model compression and acceleration techniques that enabled the portability of deeplearning detection models is included. It is of great use for future developments in the manufacturing industry that many of the popular, above mentioned models are easy to re-purpose for defect detection and, thus could really contribute to the overall increase in productivity of this sector. Moreover, in the experiment performed the YOLOv4 model was trained and re-purposed for industrial cable detection in several hours. The computing needs could be fulfilled by a general purpose computer or by a high-performance desktop setup, depending on the specificity of the application. Hence, the barrier of computing shall be somewhat easier to climb for all types of businesses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
wallonce发布了新的文献求助30
刚刚
1秒前
1秒前
数字字母下划线完成签到,获得积分10
1秒前
迷人雪一发布了新的文献求助10
2秒前
汉堡包应助由由采纳,获得10
3秒前
孙靖博发布了新的文献求助10
3秒前
5秒前
韩梅完成签到,获得积分20
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
CipherSage应助li17195采纳,获得10
8秒前
顾矜应助笑笑的妙松采纳,获得10
8秒前
8秒前
xin完成签到,获得积分20
9秒前
WindStar完成签到,获得积分10
9秒前
劣根发布了新的文献求助10
10秒前
斯文败类应助wallonce采纳,获得30
11秒前
内向宝马发布了新的文献求助10
11秒前
王王碎冰冰完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
14秒前
WindStar发布了新的文献求助10
14秒前
甜甜的慕山完成签到,获得积分10
15秒前
15秒前
小二郎应助缓慢晟睿采纳,获得10
16秒前
17秒前
小石头发布了新的文献求助10
17秒前
happy发布了新的文献求助50
17秒前
老狗子完成签到,获得积分10
18秒前
科目三应助迷人雪一采纳,获得10
18秒前
昏睡的擎苍完成签到,获得积分10
18秒前
20秒前
IMkily完成签到,获得积分10
20秒前
drchen发布了新的文献求助30
21秒前
老狗子发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663524
求助须知:如何正确求助?哪些是违规求助? 4850541
关于积分的说明 15104701
捐赠科研通 4821750
什么是DOI,文献DOI怎么找? 2580972
邀请新用户注册赠送积分活动 1535170
关于科研通互助平台的介绍 1493501