重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A review on modern defect detection models using DCNNs – Deep convolutional neural networks

计算机科学 卷积神经网络 软件可移植性 深度学习 人工智能 标杆管理 目标检测 机器学习 计算机工程 模式识别(心理学) 营销 业务 程序设计语言
作者
Tulbure Andrei-Alexandru,Tulbure Adrian-Alexandru,Eva H. Dulf
出处
期刊:Journal of Advanced Research [Elsevier]
卷期号:35: 33-48 被引量:231
标识
DOI:10.1016/j.jare.2021.03.015
摘要

Over the last years Deep Learning has shown to yield remarkable results when compared to traditional computer vision algorithms, in a large variety of computer vision applications. The deeplearning models outperformed in both accuracy and processing time. Thus, once a deeplearning models won the Image Net Large Scale Visual Recognition Contest, it proved that this area of research is of great potential. Furthermore, these increases in recognition performance resulted in more applied research and thus, more applications where deeplearning is useful: one of which is defect detection (or visual defect detection). In the last few years, deeplearning models achieved higher and higher accuracy on the complex testing datasets used for benchmarking. This surge in accuracy and usage is also supported (besides swarms of researchers pouring into the race), by incremental breakthroughs in computing hardware: such as more powerful GPUs(Graphical processing units), CPUs(central processing units) and better computing procedures (libraries and frameworks). To offer a structured and analytical overview(stating both advantages and disadvantages) of the existing popular object detection models that can be re-purposed for defect detection: such as Region based CNNs(Convolutional neural networks), YOLO(You only look once), SSD(single shot detectors) and cascaded architectures. A further brief summary on model compression and acceleration techniques that enabled the portability of deeplearning detection models is included. It is of great use for future developments in the manufacturing industry that many of the popular, above mentioned models are easy to re-purpose for defect detection and, thus could really contribute to the overall increase in productivity of this sector. Moreover, in the experiment performed the YOLOv4 model was trained and re-purposed for industrial cable detection in several hours. The computing needs could be fulfilled by a general purpose computer or by a high-performance desktop setup, depending on the specificity of the application. Hence, the barrier of computing shall be somewhat easier to climb for all types of businesses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助可爱飞绿采纳,获得20
刚刚
槐零音完成签到,获得积分10
刚刚
刚刚
研友_851KE8发布了新的文献求助10
刚刚
qin完成签到,获得积分10
刚刚
zlf发布了新的文献求助10
1秒前
melon发布了新的文献求助10
1秒前
1秒前
ohno耶耶耶发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
谭欣怡发布了新的文献求助10
2秒前
iNk应助kirren采纳,获得20
3秒前
Gasoline.完成签到,获得积分20
3秒前
MingY发布了新的文献求助10
3秒前
3秒前
Pikachu举报寒梅求助涉嫌违规
3秒前
长小右完成签到,获得积分10
3秒前
4秒前
归零者发布了新的文献求助10
4秒前
橘子1发布了新的文献求助10
4秒前
4秒前
4秒前
我是老大应助镘淳采纳,获得10
5秒前
5秒前
5秒前
清爽的静蕾完成签到,获得积分20
5秒前
Jepsen发布了新的文献求助10
5秒前
lan完成签到,获得积分10
5秒前
科研小白发布了新的文献求助10
5秒前
Yimi发布了新的文献求助10
6秒前
太清发布了新的文献求助10
6秒前
隐形曼青应助liliping采纳,获得10
6秒前
时荒完成签到,获得积分10
6秒前
王锐发布了新的文献求助10
7秒前
hah完成签到,获得积分10
7秒前
沉默黑猫发布了新的文献求助10
7秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605