Diagnostic power of resting‐state fMRI for detection of network connectivity in Alzheimer's disease and mild cognitive impairment: A systematic review

默认模式网络 楔前 后扣带 静息状态功能磁共振成像 扣带回前部 神经科学 认知障碍 人类连接体项目 认知 阿尔茨海默病 医学 心理学 疾病 功能连接 病理
作者
Buhari Ibrahim,Subapriya Suppiah,Normala Ibrahim,Mazlyfarina Mohamad,Hasyma Abu Hassan,Nisha Syed Nasser,M. Iqbal Saripan
出处
期刊:Human Brain Mapping [Wiley]
卷期号:42 (9): 2941-2968 被引量:96
标识
DOI:10.1002/hbm.25369
摘要

Abstract Resting‐state fMRI (rs‐fMRI) detects functional connectivity (FC) abnormalities that occur in the brains of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). FC of the default mode network (DMN) is commonly impaired in AD and MCI. We conducted a systematic review aimed at determining the diagnostic power of rs‐fMRI to identify FC abnormalities in the DMN of patients with AD or MCI compared with healthy controls (HCs) using machine learning (ML) methods. Multimodal support vector machine (SVM) algorithm was the commonest form of ML method utilized. Multiple kernel approach can be utilized to aid in the classification by incorporating various discriminating features, such as FC graphs based on “nodes” and “edges” together with structural MRI‐based regional cortical thickness and gray matter volume. Other multimodal features include neuropsychiatric testing scores, DTI features, and regional cerebral blood flow. Among AD patients, the posterior cingulate cortex (PCC)/Precuneus was noted to be a highly affected hub of the DMN that demonstrated overall reduced FC. Whereas reduced DMN FC between the PCC and anterior cingulate cortex (ACC) was observed in MCI patients. Evidence indicates that the nodes of the DMN can offer moderate to high diagnostic power to distinguish AD and MCI patients. Nevertheless, various concerns over the homogeneity of data based on patient selection, scanner effects, and the variable usage of classifiers and algorithms pose a challenge for ML‐based image interpretation of rs‐fMRI datasets to become a mainstream option for diagnosing AD and predicting the conversion of HC/MCI to AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xylxyl完成签到,获得积分10
刚刚
1秒前
ZBN完成签到,获得积分10
1秒前
222关闭了222文献求助
2秒前
chinh完成签到,获得积分10
2秒前
钮祜禄废废完成签到,获得积分10
2秒前
2秒前
曾经富完成签到,获得积分10
4秒前
酷酷海豚完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
青青完成签到 ,获得积分10
8秒前
Chan0501发布了新的文献求助10
8秒前
昭昭完成签到,获得积分10
9秒前
SCI发布了新的文献求助10
9秒前
卓然完成签到,获得积分10
9秒前
李来仪发布了新的文献求助10
10秒前
11秒前
菲菲呀完成签到,获得积分10
11秒前
Rrr发布了新的文献求助10
11秒前
13秒前
陌路完成签到,获得积分10
13秒前
善学以致用应助leon采纳,获得30
13秒前
14秒前
斯文败类应助嘻嘻采纳,获得10
14秒前
科研通AI5应助小只bb采纳,获得30
14秒前
yyyy发布了新的文献求助10
14秒前
2023AKY完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
彭于晏应助惠惠采纳,获得10
17秒前
风魂剑主完成签到,获得积分10
18秒前
yryzst9899发布了新的文献求助10
18秒前
19秒前
飘逸小笼包完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794