Automated EEG pathology detection based on different convolutional neural network models: Deep learning approach

脑电图 卷积神经网络 计算机科学 人工智能 支持向量机 模式识别(心理学) 分类器(UML) 深度学习 机器学习 语音识别 医学 精神科
作者
Rishabh Bajpai,Rajamanickam Yuvaraj,A. Amalin Prince
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:133: 104434-104434 被引量:27
标识
DOI:10.1016/j.compbiomed.2021.104434
摘要

The brain electrical activity, recorded and materialized as electroencephalogram (EEG) signals, is known to be very useful in the diagnosis of brain-related pathology. However, manual examination of these EEG signals has various limitations, including time-consuming inspections, the need for highly trained neurologists, and the subjectiveness of the evaluation. Thus, an automated EEG pathology detection system would be helpful to assist neurologists to enhance the treatment procedure by making a quicker diagnosis and reducing error due to the human element. This work proposes the application of a time-frequency spectrum to convert the EEG signals onto the image domain. The spectrum images are then applied to the Convolutional Neural Network (CNN) to learn robust features that can aid the automatic detection of pathology and normal EEG signals. Three popular CNN in the form of the DenseNet, Inception-ResNet v2, and SeizureNet were employed. The extracted deep-learned features from the spectrum images are then passed onto the support vector machine (SVM) classifier. The effectiveness of the proposed approach was assessed using the publicly available Temple University Hospital (TUH) abnormal EEG corpus dataset, which is demographically balanced. The proposed SeizureNet-SVM-based system achieved state-of-the-art performance: accuracy, sensitivity, and specificity of 96.65%, 90.48%, and 100%, respectively. The results show that the proposed framework may serve as a diagnostic tool to assist clinicians in the detection of EEG pathology for early treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lily发布了新的文献求助10
1秒前
1秒前
小豆芽完成签到,获得积分10
1秒前
1秒前
开放大山发布了新的文献求助10
2秒前
hh完成签到,获得积分10
3秒前
充电宝应助甜甜寄凡采纳,获得10
3秒前
3秒前
小油菜完成签到 ,获得积分10
4秒前
跳跃毒娘发布了新的文献求助10
4秒前
xiaoqi666发布了新的文献求助10
5秒前
hh发布了新的文献求助10
5秒前
科研通AI2S应助半山采纳,获得10
6秒前
7秒前
Lucas应助生生采纳,获得10
7秒前
活泼海冬应助碧蓝玉米采纳,获得30
8秒前
开放大山完成签到,获得积分10
8秒前
Tantantan发布了新的文献求助10
9秒前
拼搏向上发布了新的文献求助10
13秒前
13秒前
13504544355完成签到 ,获得积分10
15秒前
luckywannabeee完成签到,获得积分10
17秒前
amber完成签到,获得积分10
17秒前
yy完成签到,获得积分10
18秒前
跳跃毒娘完成签到,获得积分10
18秒前
斯文败类应助福尔摩骑采纳,获得10
18秒前
hiiamwu完成签到 ,获得积分10
18秒前
19秒前
虚心醉蝶完成签到 ,获得积分10
19秒前
iiiorange发布了新的文献求助20
22秒前
甜甜寄凡发布了新的文献求助10
22秒前
23秒前
深情安青应助憨憨芸采纳,获得10
24秒前
自由薯片完成签到,获得积分10
25秒前
安详的书本完成签到 ,获得积分10
26秒前
不在乎过完成签到,获得积分10
26秒前
27秒前
你好呀嘻嘻完成签到 ,获得积分10
27秒前
27秒前
28秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168340
求助须知:如何正确求助?哪些是违规求助? 2819684
关于积分的说明 7927447
捐赠科研通 2479569
什么是DOI,文献DOI怎么找? 1320994
科研通“疑难数据库(出版商)”最低求助积分说明 632925
版权声明 602460