A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox

特征提取 断层(地质) 传动系 小波 涡轮机 计算机科学 残余物 模式识别(心理学) 故障检测与隔离 转化(遗传学) 时频分析 小波包分解 频带 特征(语言学) 人工智能 卷积(计算机科学) 工程类 小波变换 地质学 算法 人工神经网络 雷达 电信 地震学 扭矩 基因 物理 机械工程 热力学 生物化学 带宽(计算) 化学 语言学 哲学 执行机构
作者
Kai Zhang,Baoping Tang,Lei Deng,Xiaoli Liu
出处
期刊:Measurement [Elsevier]
卷期号:179: 109491-109491 被引量:129
标识
DOI:10.1016/j.measurement.2021.109491
摘要

It is significant to boost the performance of fault diagnosis of wind turbine gearboxes. In this paper, a hybrid attention improved residual network (HA-ResNet) based method is proposed to diagnose the fault of wind turbines gearbox by highlighting the essential frequency bands of wavelet coefficients and the fault features of convolution channels. First, the paper performed wavelet packet transformation (WPT) on the raw signal and improved the ResNet by the band attention to highlight features of wavelet coefficients. Second, a fault diagnosis framework based on channel attention is designed to effectively improve the nonlinear feature extraction ability of deep convolutional networks. The proposed method is verified by a simulation dataset of the drivetrain diagnostic simulator (DDS) and the measured data from a wind farm. The results illustrate the superior performance of the HA-ResNet based fault diagnosis method for time–frequency feature extraction of vibration signals, frequency band information enhancement, and recognition accuracy improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助过时的又槐采纳,获得10
刚刚
3秒前
鄙视注册完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
落寞溪灵完成签到 ,获得积分10
7秒前
玖玖柒idol完成签到,获得积分10
7秒前
曌虞完成签到,获得积分10
7秒前
8秒前
啥,这都是啥完成签到,获得积分10
8秒前
皮皮桂发布了新的文献求助10
9秒前
10秒前
大大发布了新的文献求助10
10秒前
11秒前
orixero应助wang1090采纳,获得30
13秒前
13秒前
l11x29发布了新的文献求助10
15秒前
lin完成签到,获得积分10
15秒前
大侠发布了新的文献求助10
16秒前
16秒前
是锦锦呀完成签到,获得积分10
16秒前
16秒前
李秋静发布了新的文献求助10
17秒前
zhen发布了新的文献求助50
19秒前
是锦锦呀发布了新的文献求助60
19秒前
Khr1stINK发布了新的文献求助10
21秒前
22秒前
NexusExplorer应助Dddd采纳,获得10
24秒前
24秒前
Akim应助zhaowenxian采纳,获得10
25秒前
谦让的鹏煊完成签到,获得积分10
26秒前
zccc完成签到 ,获得积分10
27秒前
28秒前
hhzz发布了新的文献求助10
29秒前
坚定的雁完成签到 ,获得积分10
30秒前
31秒前
两先生完成签到 ,获得积分10
31秒前
豆dou发布了新的文献求助10
31秒前
丘比特应助SS采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808