Enhancing Graph Neural Networks by a High-quality Aggregation of Beneficial Information

计算机科学 平滑的 图形 嵌入 人工神经网络 可解释性 节点(物理) 理论计算机科学 人工智能 数据挖掘 机器学习 计算机视觉 结构工程 工程类
作者
Chuang Liu,Jia Wu,Weiwei Liu,Wenbin Hu
出处
期刊:Neural Networks [Elsevier]
卷期号:142: 20-33 被引量:27
标识
DOI:10.1016/j.neunet.2021.04.025
摘要

Graph Neural Networks (GNNs), such as GCN, GraphSAGE, GAT, and SGC, have achieved state-of-the-art performance on a wide range of graph-based tasks. These models all use a technique called neighborhood aggregation, in which the embedding of each node is updated by aggregating the embeddings of its neighbors. However, not all information aggregated from neighbors is beneficial. In some cases, a portion of the neighbor information may be harmful to the downstream tasks. For the high-quality aggregation of beneficial information, we propose a flexible method EGAI (Enhancing Graph neural networks by a high-quality Aggregation of beneficial Information). The core concept of this method is to filter out the redundant and harmful information by removing specific edges during each training epoch. The practical and theoretical motivations, considerations, and strategies related to this method are discussed in detail. EGAI is a general method that can be combined with many backbone models (e.g., GCN, GraphSAGE, GAT, and SGC) to enhance their performance in the node classification task. In addition, EGAI reduces the convergence speed of over-smoothing that occurs when models are deepened. Extensive experiments on three real-world networks demonstrate that EGAI indeed improves the performance for both shallow and deep GNN models, and to some extent, mitigates over-smoothing. The code is available at https://github.com/liucoo/egai.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
繁荣的小白菜完成签到,获得积分10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
昏睡的蟠桃应助shadow采纳,获得30
2秒前
枸杞子完成签到,获得积分10
3秒前
lokiuiw发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
5秒前
爱吃小鱼饼的西柚完成签到,获得积分10
5秒前
231完成签到 ,获得积分10
6秒前
香蕉觅云应助allglitters采纳,获得10
6秒前
镓氧锌钇铀应助枸杞子采纳,获得20
6秒前
嘿嘿应助白开水采纳,获得30
6秒前
咩咩子完成签到,获得积分10
7秒前
arizaki7应助缥缈的千柳采纳,获得10
8秒前
8秒前
明天再说完成签到,获得积分10
9秒前
9秒前
9秒前
qin发布了新的文献求助10
9秒前
cm完成签到,获得积分10
9秒前
10秒前
xuan关注了科研通微信公众号
10秒前
11秒前
xiaofeng完成签到,获得积分10
11秒前
huimin完成签到 ,获得积分20
12秒前
14秒前
14秒前
15秒前
情怀应助苗儿采纳,获得10
16秒前
16秒前
16秒前
man完成签到 ,获得积分10
16秒前
16秒前
善学以致用应助倪维采纳,获得10
16秒前
16秒前
小雪发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545545
求助须知:如何正确求助?哪些是违规求助? 4631578
关于积分的说明 14621138
捐赠科研通 4573196
什么是DOI,文献DOI怎么找? 2507417
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455383