Enhancing Graph Neural Networks by a High-quality Aggregation of Beneficial Information

计算机科学 平滑的 图形 嵌入 人工神经网络 可解释性 节点(物理) 理论计算机科学 人工智能 数据挖掘 机器学习 结构工程 工程类 计算机视觉
作者
Chuang Liu,Jia Wu,Weiwei Liu,Wenbin Hu
出处
期刊:Neural Networks [Elsevier]
卷期号:142: 20-33 被引量:25
标识
DOI:10.1016/j.neunet.2021.04.025
摘要

Graph Neural Networks (GNNs), such as GCN, GraphSAGE, GAT, and SGC, have achieved state-of-the-art performance on a wide range of graph-based tasks. These models all use a technique called neighborhood aggregation, in which the embedding of each node is updated by aggregating the embeddings of its neighbors. However, not all information aggregated from neighbors is beneficial. In some cases, a portion of the neighbor information may be harmful to the downstream tasks. For the high-quality aggregation of beneficial information, we propose a flexible method EGAI (Enhancing Graph neural networks by a high-quality Aggregation of beneficial Information). The core concept of this method is to filter out the redundant and harmful information by removing specific edges during each training epoch. The practical and theoretical motivations, considerations, and strategies related to this method are discussed in detail. EGAI is a general method that can be combined with many backbone models (e.g., GCN, GraphSAGE, GAT, and SGC) to enhance their performance in the node classification task. In addition, EGAI reduces the convergence speed of over-smoothing that occurs when models are deepened. Extensive experiments on three real-world networks demonstrate that EGAI indeed improves the performance for both shallow and deep GNN models, and to some extent, mitigates over-smoothing. The code is available at https://github.com/liucoo/egai.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香芋应助科研通管家采纳,获得10
刚刚
光影发布了新的文献求助10
刚刚
贪玩灵松完成签到,获得积分10
2秒前
思源应助shi hui采纳,获得10
2秒前
小二郎应助就这采纳,获得10
3秒前
WX完成签到 ,获得积分10
3秒前
如意孤云发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
xinyi完成签到,获得积分10
5秒前
柠c完成签到,获得积分10
6秒前
英俊的铭应助hhhhhh采纳,获得10
7秒前
健壮的怜烟完成签到,获得积分10
7秒前
红豆完成签到,获得积分10
8秒前
易槐发布了新的文献求助10
11秒前
芝麻福福完成签到,获得积分10
12秒前
自觉的元芹完成签到,获得积分10
13秒前
13秒前
sevenscience完成签到,获得积分10
13秒前
13秒前
NexusExplorer应助Morgen采纳,获得10
13秒前
Mira完成签到,获得积分10
14秒前
14秒前
子爵木完成签到 ,获得积分10
15秒前
whfszg1445完成签到,获得积分10
16秒前
YY发布了新的文献求助10
16秒前
细腻的嵩完成签到,获得积分20
17秒前
17秒前
哎呀呀的小胖胖应助ff采纳,获得10
17秒前
研友_WnqRGZ发布了新的文献求助10
18秒前
18秒前
taotie发布了新的文献求助10
19秒前
gww发布了新的文献求助10
19秒前
23秒前
EddieWu完成签到,获得积分10
23秒前
25秒前
haha完成签到,获得积分10
25秒前
27秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348411
求助须知:如何正确求助?哪些是违规求助? 2974638
关于积分的说明 8665007
捐赠科研通 2655245
什么是DOI,文献DOI怎么找? 1453926
科研通“疑难数据库(出版商)”最低求助积分说明 673171
邀请新用户注册赠送积分活动 663386