Enhancing Graph Neural Networks by a High-quality Aggregation of Beneficial Information

计算机科学 平滑的 图形 嵌入 人工神经网络 可解释性 节点(物理) 理论计算机科学 人工智能 数据挖掘 机器学习 结构工程 工程类 计算机视觉
作者
Chuang Liu,Jia Wu,Weiwei Liu,Wenbin Hu
出处
期刊:Neural Networks [Elsevier]
卷期号:142: 20-33 被引量:27
标识
DOI:10.1016/j.neunet.2021.04.025
摘要

Graph Neural Networks (GNNs), such as GCN, GraphSAGE, GAT, and SGC, have achieved state-of-the-art performance on a wide range of graph-based tasks. These models all use a technique called neighborhood aggregation, in which the embedding of each node is updated by aggregating the embeddings of its neighbors. However, not all information aggregated from neighbors is beneficial. In some cases, a portion of the neighbor information may be harmful to the downstream tasks. For the high-quality aggregation of beneficial information, we propose a flexible method EGAI (Enhancing Graph neural networks by a high-quality Aggregation of beneficial Information). The core concept of this method is to filter out the redundant and harmful information by removing specific edges during each training epoch. The practical and theoretical motivations, considerations, and strategies related to this method are discussed in detail. EGAI is a general method that can be combined with many backbone models (e.g., GCN, GraphSAGE, GAT, and SGC) to enhance their performance in the node classification task. In addition, EGAI reduces the convergence speed of over-smoothing that occurs when models are deepened. Extensive experiments on three real-world networks demonstrate that EGAI indeed improves the performance for both shallow and deep GNN models, and to some extent, mitigates over-smoothing. The code is available at https://github.com/liucoo/egai.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jason发布了新的文献求助10
1秒前
ceeray23应助田浩采纳,获得10
1秒前
科研通AI6应助风清扬采纳,获得10
3秒前
GuMingyang完成签到,获得积分10
4秒前
秦可可发布了新的文献求助10
5秒前
熊国开发布了新的文献求助10
6秒前
6秒前
李爱国应助虚心的清采纳,获得10
8秒前
Aura完成签到,获得积分10
8秒前
kento完成签到,获得积分0
10秒前
vivian发布了新的文献求助10
12秒前
Hmbb完成签到,获得积分10
12秒前
自信书文完成签到 ,获得积分10
12秒前
Stove完成签到,获得积分10
13秒前
13秒前
comma完成签到,获得积分10
15秒前
秦可可完成签到,获得积分10
17秒前
Ava应助vivian采纳,获得10
18秒前
18秒前
19秒前
为啥发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
21秒前
Drone应助滑腻腻的小鱼采纳,获得10
21秒前
黄大仙完成签到,获得积分10
21秒前
虚幻的冬瓜完成签到 ,获得积分10
22秒前
ZXJ1009完成签到,获得积分20
24秒前
森森发布了新的文献求助10
25秒前
大块完成签到 ,获得积分10
26秒前
Ephemerality完成签到 ,获得积分10
27秒前
jason发布了新的文献求助30
27秒前
熊国开完成签到,获得积分10
27秒前
蓝天发布了新的文献求助10
28秒前
alee完成签到,获得积分10
28秒前
29秒前
CHENG_2025完成签到,获得积分10
30秒前
香蕉觅云应助michael采纳,获得10
30秒前
淋山河完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565531
求助须知:如何正确求助?哪些是违规求助? 4650613
关于积分的说明 14691991
捐赠科研通 4592552
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492065
关于科研通互助平台的介绍 1463281