亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Graph Neural Networks by a High-quality Aggregation of Beneficial Information

计算机科学 平滑的 图形 嵌入 人工神经网络 可解释性 节点(物理) 理论计算机科学 人工智能 数据挖掘 机器学习 计算机视觉 结构工程 工程类
作者
Chuang Liu,Jia Wu,Weiwei Liu,Wenbin Hu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:142: 20-33 被引量:27
标识
DOI:10.1016/j.neunet.2021.04.025
摘要

Graph Neural Networks (GNNs), such as GCN, GraphSAGE, GAT, and SGC, have achieved state-of-the-art performance on a wide range of graph-based tasks. These models all use a technique called neighborhood aggregation, in which the embedding of each node is updated by aggregating the embeddings of its neighbors. However, not all information aggregated from neighbors is beneficial. In some cases, a portion of the neighbor information may be harmful to the downstream tasks. For the high-quality aggregation of beneficial information, we propose a flexible method EGAI (Enhancing Graph neural networks by a high-quality Aggregation of beneficial Information). The core concept of this method is to filter out the redundant and harmful information by removing specific edges during each training epoch. The practical and theoretical motivations, considerations, and strategies related to this method are discussed in detail. EGAI is a general method that can be combined with many backbone models (e.g., GCN, GraphSAGE, GAT, and SGC) to enhance their performance in the node classification task. In addition, EGAI reduces the convergence speed of over-smoothing that occurs when models are deepened. Extensive experiments on three real-world networks demonstrate that EGAI indeed improves the performance for both shallow and deep GNN models, and to some extent, mitigates over-smoothing. The code is available at https://github.com/liucoo/egai.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk完成签到 ,获得积分10
刚刚
谢挽风完成签到,获得积分10
1秒前
善学以致用应助vuu采纳,获得30
10秒前
火星上含芙完成签到 ,获得积分10
14秒前
笔墨留香完成签到,获得积分10
16秒前
科研通AI6应助sun采纳,获得10
23秒前
忧虑的代容完成签到,获得积分10
25秒前
26秒前
奔跑的小熊完成签到 ,获得积分10
27秒前
有趣的银发布了新的文献求助10
31秒前
科研通AI6应助sun采纳,获得10
34秒前
有趣的银完成签到,获得积分10
36秒前
小蝶完成签到 ,获得积分10
39秒前
爱学习的YY完成签到 ,获得积分10
43秒前
共享精神应助干净南风采纳,获得10
50秒前
sun发布了新的文献求助10
51秒前
吃了吃了完成签到,获得积分10
51秒前
归尘发布了新的文献求助10
58秒前
豆子应助rose采纳,获得20
1分钟前
1分钟前
1分钟前
二丙发布了新的文献求助10
1分钟前
归尘完成签到,获得积分10
1分钟前
sun发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Dice°完成签到,获得积分20
1分钟前
飞龙在天完成签到,获得积分10
1分钟前
1分钟前
orange完成签到 ,获得积分10
1分钟前
1分钟前
Dice°发布了新的文献求助10
1分钟前
1分钟前
sun发布了新的文献求助10
1分钟前
浮游应助葛力采纳,获得10
1分钟前
王家的燕子完成签到,获得积分10
1分钟前
1分钟前
爆米花应助Dice°采纳,获得10
1分钟前
科研通AI6应助微笑采纳,获得10
1分钟前
HZY发布了新的文献求助10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232425
求助须知:如何正确求助?哪些是违规求助? 4401744
关于积分的说明 13699291
捐赠科研通 4268089
什么是DOI,文献DOI怎么找? 2342347
邀请新用户注册赠送积分活动 1339394
关于科研通互助平台的介绍 1295992