Enhancing Graph Neural Networks by a High-quality Aggregation of Beneficial Information

计算机科学 平滑的 图形 嵌入 人工神经网络 可解释性 节点(物理) 理论计算机科学 人工智能 数据挖掘 机器学习 计算机视觉 结构工程 工程类
作者
Chuang Liu,Jia Wu,Weiwei Liu,Wenbin Hu
出处
期刊:Neural Networks [Elsevier]
卷期号:142: 20-33 被引量:27
标识
DOI:10.1016/j.neunet.2021.04.025
摘要

Graph Neural Networks (GNNs), such as GCN, GraphSAGE, GAT, and SGC, have achieved state-of-the-art performance on a wide range of graph-based tasks. These models all use a technique called neighborhood aggregation, in which the embedding of each node is updated by aggregating the embeddings of its neighbors. However, not all information aggregated from neighbors is beneficial. In some cases, a portion of the neighbor information may be harmful to the downstream tasks. For the high-quality aggregation of beneficial information, we propose a flexible method EGAI (Enhancing Graph neural networks by a high-quality Aggregation of beneficial Information). The core concept of this method is to filter out the redundant and harmful information by removing specific edges during each training epoch. The practical and theoretical motivations, considerations, and strategies related to this method are discussed in detail. EGAI is a general method that can be combined with many backbone models (e.g., GCN, GraphSAGE, GAT, and SGC) to enhance their performance in the node classification task. In addition, EGAI reduces the convergence speed of over-smoothing that occurs when models are deepened. Extensive experiments on three real-world networks demonstrate that EGAI indeed improves the performance for both shallow and deep GNN models, and to some extent, mitigates over-smoothing. The code is available at https://github.com/liucoo/egai.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助囡囡不难采纳,获得10
刚刚
蓝桉完成签到 ,获得积分10
1秒前
汉堡包应助默默的峻熙采纳,获得10
1秒前
长安发布了新的文献求助10
1秒前
1秒前
1秒前
Syyyy发布了新的文献求助10
1秒前
我是老大应助111采纳,获得10
2秒前
2秒前
Li完成签到,获得积分10
2秒前
zxdnbb发布了新的文献求助10
2秒前
kkxl完成签到,获得积分10
3秒前
酷炫的安雁完成签到 ,获得积分10
4秒前
5秒前
摸鱼ing完成签到,获得积分10
6秒前
skyangar发布了新的文献求助10
6秒前
敏哇哇哇发布了新的文献求助10
6秒前
7秒前
Jayjay发布了新的文献求助10
7秒前
Ali完成签到,获得积分10
7秒前
我我完成签到,获得积分20
7秒前
8秒前
Yi关注了科研通微信公众号
9秒前
9秒前
隐形曼青应助彩色的乐驹采纳,获得10
10秒前
10秒前
10秒前
10秒前
华仔应助柯向薇采纳,获得10
10秒前
Northtime完成签到,获得积分10
10秒前
天天快乐应助kong采纳,获得10
10秒前
Yanhai发布了新的文献求助10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
朱猪仔完成签到,获得积分20
11秒前
11秒前
隐形元绿完成签到,获得积分10
11秒前
11秒前
emma完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123