亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Graph Neural Networks by a High-quality Aggregation of Beneficial Information

计算机科学 平滑的 图形 嵌入 人工神经网络 可解释性 节点(物理) 理论计算机科学 人工智能 数据挖掘 机器学习 计算机视觉 结构工程 工程类
作者
Chuang Liu,Jia Wu,Weiwei Liu,Wenbin Hu
出处
期刊:Neural Networks [Elsevier]
卷期号:142: 20-33 被引量:27
标识
DOI:10.1016/j.neunet.2021.04.025
摘要

Graph Neural Networks (GNNs), such as GCN, GraphSAGE, GAT, and SGC, have achieved state-of-the-art performance on a wide range of graph-based tasks. These models all use a technique called neighborhood aggregation, in which the embedding of each node is updated by aggregating the embeddings of its neighbors. However, not all information aggregated from neighbors is beneficial. In some cases, a portion of the neighbor information may be harmful to the downstream tasks. For the high-quality aggregation of beneficial information, we propose a flexible method EGAI (Enhancing Graph neural networks by a high-quality Aggregation of beneficial Information). The core concept of this method is to filter out the redundant and harmful information by removing specific edges during each training epoch. The practical and theoretical motivations, considerations, and strategies related to this method are discussed in detail. EGAI is a general method that can be combined with many backbone models (e.g., GCN, GraphSAGE, GAT, and SGC) to enhance their performance in the node classification task. In addition, EGAI reduces the convergence speed of over-smoothing that occurs when models are deepened. Extensive experiments on three real-world networks demonstrate that EGAI indeed improves the performance for both shallow and deep GNN models, and to some extent, mitigates over-smoothing. The code is available at https://github.com/liucoo/egai.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kw98完成签到 ,获得积分10
8秒前
mmyhn应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
天凉王破完成签到 ,获得积分10
14秒前
葡紫明完成签到 ,获得积分10
25秒前
30秒前
Paris发布了新的文献求助10
35秒前
GlockieZhao完成签到,获得积分10
38秒前
41秒前
啊哒吸哇完成签到,获得积分10
41秒前
上善若水完成签到 ,获得积分10
47秒前
sleeplala完成签到 ,获得积分10
59秒前
59秒前
yiyilan发布了新的文献求助10
1分钟前
大模型应助yiyilan采纳,获得10
1分钟前
1分钟前
1分钟前
CC完成签到 ,获得积分10
1分钟前
去海边拾贝壳完成签到,获得积分10
1分钟前
椰啵啵完成签到 ,获得积分10
1分钟前
1分钟前
chenxuuu完成签到,获得积分10
1分钟前
怡然的姒完成签到,获得积分10
1分钟前
1分钟前
LMX完成签到 ,获得积分10
1分钟前
1分钟前
调皮乌发布了新的文献求助10
2分钟前
2分钟前
mmyhn应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
yiyilan发布了新的文献求助10
2分钟前
orixero应助yiyilan采纳,获得10
2分钟前
cjh完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534156
求助须知:如何正确求助?哪些是违规求助? 4622256
关于积分的说明 14582228
捐赠科研通 4562402
什么是DOI,文献DOI怎么找? 2500167
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450832