Enhancing Graph Neural Networks by a High-quality Aggregation of Beneficial Information

计算机科学 平滑的 图形 嵌入 人工神经网络 可解释性 节点(物理) 理论计算机科学 人工智能 数据挖掘 机器学习 结构工程 工程类 计算机视觉
作者
Chuang Liu,Jia Wu,Weiwei Liu,Wenbin Hu
出处
期刊:Neural Networks [Elsevier]
卷期号:142: 20-33 被引量:27
标识
DOI:10.1016/j.neunet.2021.04.025
摘要

Graph Neural Networks (GNNs), such as GCN, GraphSAGE, GAT, and SGC, have achieved state-of-the-art performance on a wide range of graph-based tasks. These models all use a technique called neighborhood aggregation, in which the embedding of each node is updated by aggregating the embeddings of its neighbors. However, not all information aggregated from neighbors is beneficial. In some cases, a portion of the neighbor information may be harmful to the downstream tasks. For the high-quality aggregation of beneficial information, we propose a flexible method EGAI (Enhancing Graph neural networks by a high-quality Aggregation of beneficial Information). The core concept of this method is to filter out the redundant and harmful information by removing specific edges during each training epoch. The practical and theoretical motivations, considerations, and strategies related to this method are discussed in detail. EGAI is a general method that can be combined with many backbone models (e.g., GCN, GraphSAGE, GAT, and SGC) to enhance their performance in the node classification task. In addition, EGAI reduces the convergence speed of over-smoothing that occurs when models are deepened. Extensive experiments on three real-world networks demonstrate that EGAI indeed improves the performance for both shallow and deep GNN models, and to some extent, mitigates over-smoothing. The code is available at https://github.com/liucoo/egai.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
1秒前
1秒前
1秒前
NexusExplorer应助liumengyuan采纳,获得10
1秒前
轻松狗发布了新的文献求助10
2秒前
asdxsweef完成签到,获得积分10
2秒前
2秒前
3秒前
5秒前
5秒前
5秒前
asdxsweef发布了新的文献求助10
5秒前
zhengzhao发布了新的文献求助10
5秒前
番茄鱼发布了新的文献求助10
5秒前
6秒前
黑色天使完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
天天快乐应助april采纳,获得10
7秒前
标致的香水完成签到,获得积分10
8秒前
科研科发布了新的文献求助10
8秒前
10秒前
美好的夜白完成签到,获得积分20
11秒前
天份完成签到,获得积分10
12秒前
落落发布了新的文献求助30
12秒前
研友_VZG7GZ应助YYQYYQYYQ采纳,获得10
12秒前
彭于晏应助石博文采纳,获得20
12秒前
13秒前
慈祥的丹寒完成签到 ,获得积分10
14秒前
wanci应助wsj采纳,获得10
14秒前
16秒前
默默的水桃完成签到,获得积分20
18秒前
眼睛大的从雪完成签到,获得积分10
18秒前
科研通AI6应助zh1858f采纳,获得10
19秒前
姜晓枫发布了新的文献求助10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
科研通AI6应助月光入梦采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
mono应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648614
求助须知:如何正确求助?哪些是违规求助? 4775865
关于积分的说明 15044750
捐赠科研通 4807529
什么是DOI,文献DOI怎么找? 2570836
邀请新用户注册赠送积分活动 1527657
关于科研通互助平台的介绍 1486538