Distributed Optical Fiber Sensing System for Large Infrastructure Temperature Monitoring

计算机科学 噪音(视频) 小波 光纤 信噪比(成像) 算法 人工智能 图像(数学) 电信
作者
Yongjun Wang,Haipeng Yao,Jingjing Wang,Xiangjun Xin
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (5): 3333-3345 被引量:13
标识
DOI:10.1109/jiot.2021.3098021
摘要

In this article, a distributed optical fiber sensing system for large infrastructure temperature monitoring is proposed. To meet the requirements of monitoring networks in terms of measurement accuracy, spatial resolution, and real-time or quasireal-time performance, a quaternion wavelet transform (QWT) image denoising algorithm is proposed to address the original edge node data for the structural monitoring networks of large infrastructures. A distributed Brillouin optical time-domain analysis (BOTDA) sensing system with a 40-km sensing fiber is established. The raw Brillouin gain spectrum (BGS) image is decomposed into one magnitude image and three phase images by QWT. The phase images of the OWT are distributed randomly and disorderly with respect to the noise, while the magnitude image of the quaternion wavelet is greatly affected by the noise. The useful message energy of the magnitude image is concentrated on a small number of coefficients with large amplitude, while the noise mainly corresponds to the coefficients with smaller amplitude. Then, the Bayes shrink threshold method is introduced to filter out noise in the magnitude image. The results indicate that the signal-to-noise ratio (SNR) and the frequency uncertainty have been improved significantly. The accuracy of the retrieved Brillouin frequency shift from denoised BGS images reaches 0.2 MHz, which corresponds to a temperature error of ±0.1 °C. Less than 4 s are required to process a BGS image with 50 $\times $ 40 000 pixels by the QWT denoising technique. The uploaded data obtained from 40 M bytes of raw data are reduced to 0.08 M bytes for each measurement. We hope that with technological progress and algorithm optimization, the distributed optical fiber sensing system based on the QWT image denoising algorithm will have an important role in the real-time application of large-scale infrastructure structural health monitoring for the Internet of Things.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助温婉的篮球采纳,获得10
刚刚
月光入梦发布了新的文献求助10
1秒前
科研通AI6应助cc采纳,获得30
2秒前
追寻师完成签到 ,获得积分10
2秒前
Hushluo完成签到,获得积分10
2秒前
Akim应助包容代芹采纳,获得10
3秒前
4秒前
wang发布了新的文献求助10
4秒前
科研通AI6应助oxear采纳,获得10
4秒前
花海发布了新的文献求助10
5秒前
饼干完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
勤奋雨完成签到,获得积分10
7秒前
乐观的凌兰完成签到 ,获得积分10
7秒前
专注的问寒应助cherrychou采纳,获得30
8秒前
9秒前
无昵称完成签到 ,获得积分10
9秒前
饼干发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
花开花落花无悔完成签到 ,获得积分10
11秒前
大模型应助Rdeohio采纳,获得10
11秒前
一只萌新完成签到,获得积分10
12秒前
13秒前
WangYZ发布了新的文献求助10
13秒前
13秒前
华仔应助老李采纳,获得10
13秒前
14秒前
xiaoliu发布了新的文献求助10
15秒前
15秒前
15秒前
天天快乐应助red采纳,获得10
15秒前
16秒前
WMT完成签到 ,获得积分10
17秒前
山有扶苏完成签到,获得积分10
19秒前
fyy完成签到 ,获得积分10
19秒前
kento发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858