Distributed Optical Fiber Sensing System for Large Infrastructure Temperature Monitoring

计算机科学 噪音(视频) 小波 光纤 信噪比(成像) 算法 人工智能 图像(数学) 电信
作者
Yongjun Wang,Haipeng Yao,Jingjing Wang,Xiangjun Xin
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (5): 3333-3345 被引量:13
标识
DOI:10.1109/jiot.2021.3098021
摘要

In this article, a distributed optical fiber sensing system for large infrastructure temperature monitoring is proposed. To meet the requirements of monitoring networks in terms of measurement accuracy, spatial resolution, and real-time or quasireal-time performance, a quaternion wavelet transform (QWT) image denoising algorithm is proposed to address the original edge node data for the structural monitoring networks of large infrastructures. A distributed Brillouin optical time-domain analysis (BOTDA) sensing system with a 40-km sensing fiber is established. The raw Brillouin gain spectrum (BGS) image is decomposed into one magnitude image and three phase images by QWT. The phase images of the OWT are distributed randomly and disorderly with respect to the noise, while the magnitude image of the quaternion wavelet is greatly affected by the noise. The useful message energy of the magnitude image is concentrated on a small number of coefficients with large amplitude, while the noise mainly corresponds to the coefficients with smaller amplitude. Then, the Bayes shrink threshold method is introduced to filter out noise in the magnitude image. The results indicate that the signal-to-noise ratio (SNR) and the frequency uncertainty have been improved significantly. The accuracy of the retrieved Brillouin frequency shift from denoised BGS images reaches 0.2 MHz, which corresponds to a temperature error of ±0.1 °C. Less than 4 s are required to process a BGS image with 50 $\times $ 40 000 pixels by the QWT denoising technique. The uploaded data obtained from 40 M bytes of raw data are reduced to 0.08 M bytes for each measurement. We hope that with technological progress and algorithm optimization, the distributed optical fiber sensing system based on the QWT image denoising algorithm will have an important role in the real-time application of large-scale infrastructure structural health monitoring for the Internet of Things.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
luckysame完成签到,获得积分10
1秒前
Michaelfall完成签到,获得积分10
1秒前
2秒前
ttyhtg完成签到,获得积分10
3秒前
白白发布了新的文献求助10
3秒前
霸王龙发布了新的文献求助10
4秒前
5秒前
Yi完成签到,获得积分10
5秒前
Pises完成签到,获得积分10
6秒前
7秒前
8秒前
火火完成签到 ,获得积分10
8秒前
清脆的雁易完成签到,获得积分10
9秒前
大勺完成签到 ,获得积分10
9秒前
Wangxuyang818完成签到,获得积分20
9秒前
lulu完成签到,获得积分10
10秒前
12秒前
云墨完成签到 ,获得积分10
12秒前
cai完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
wjj119完成签到,获得积分10
12秒前
海盐发布了新的文献求助10
12秒前
kd1412完成签到 ,获得积分10
14秒前
a1074646773完成签到,获得积分10
14秒前
gougou完成签到,获得积分10
15秒前
白白完成签到,获得积分10
15秒前
小一完成签到,获得积分10
16秒前
优美的笑晴完成签到 ,获得积分10
17秒前
drift完成签到,获得积分10
17秒前
绿水晶完成签到 ,获得积分10
17秒前
17秒前
yumu2008发布了新的文献求助10
17秒前
candy完成签到,获得积分10
17秒前
海中有月完成签到 ,获得积分10
19秒前
levi完成签到,获得积分20
20秒前
影子羊完成签到,获得积分10
23秒前
patrickzhao完成签到,获得积分10
24秒前
矮小的凡阳完成签到 ,获得积分10
24秒前
你爹完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604031
求助须知:如何正确求助?哪些是违规求助? 4688850
关于积分的说明 14856729
捐赠科研通 4696120
什么是DOI,文献DOI怎么找? 2541105
邀请新用户注册赠送积分活动 1507256
关于科研通互助平台的介绍 1471832