Distributed Optical Fiber Sensing System for Large Infrastructure Temperature Monitoring

计算机科学 噪音(视频) 小波 光纤 信噪比(成像) 算法 人工智能 图像(数学) 电信
作者
Yongjun Wang,Haipeng Yao,Jingjing Wang,Xiangjun Xin
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (5): 3333-3345 被引量:13
标识
DOI:10.1109/jiot.2021.3098021
摘要

In this article, a distributed optical fiber sensing system for large infrastructure temperature monitoring is proposed. To meet the requirements of monitoring networks in terms of measurement accuracy, spatial resolution, and real-time or quasireal-time performance, a quaternion wavelet transform (QWT) image denoising algorithm is proposed to address the original edge node data for the structural monitoring networks of large infrastructures. A distributed Brillouin optical time-domain analysis (BOTDA) sensing system with a 40-km sensing fiber is established. The raw Brillouin gain spectrum (BGS) image is decomposed into one magnitude image and three phase images by QWT. The phase images of the OWT are distributed randomly and disorderly with respect to the noise, while the magnitude image of the quaternion wavelet is greatly affected by the noise. The useful message energy of the magnitude image is concentrated on a small number of coefficients with large amplitude, while the noise mainly corresponds to the coefficients with smaller amplitude. Then, the Bayes shrink threshold method is introduced to filter out noise in the magnitude image. The results indicate that the signal-to-noise ratio (SNR) and the frequency uncertainty have been improved significantly. The accuracy of the retrieved Brillouin frequency shift from denoised BGS images reaches 0.2 MHz, which corresponds to a temperature error of ±0.1 °C. Less than 4 s are required to process a BGS image with 50 $\times $ 40 000 pixels by the QWT denoising technique. The uploaded data obtained from 40 M bytes of raw data are reduced to 0.08 M bytes for each measurement. We hope that with technological progress and algorithm optimization, the distributed optical fiber sensing system based on the QWT image denoising algorithm will have an important role in the real-time application of large-scale infrastructure structural health monitoring for the Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情皮卡丘完成签到,获得积分10
1秒前
1秒前
RRR232发布了新的文献求助10
2秒前
雨也箫潇发布了新的文献求助10
2秒前
3秒前
科研通AI6应助舒心的秋荷采纳,获得10
8秒前
科研通AI6应助7890733采纳,获得10
9秒前
英俊书文发布了新的文献求助10
10秒前
15秒前
青柠完成签到 ,获得积分10
18秒前
成就糖豆完成签到 ,获得积分10
19秒前
21秒前
知春时关注了科研通微信公众号
23秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
TRz完成签到,获得积分10
25秒前
26秒前
gin430完成签到,获得积分10
26秒前
27秒前
27秒前
SciGPT应助刚睡醒采纳,获得10
28秒前
小蘑菇应助王zhuo采纳,获得10
29秒前
英吉利25发布了新的文献求助10
32秒前
33秒前
34秒前
35秒前
35秒前
app发布了新的文献求助10
35秒前
36秒前
123完成签到,获得积分10
36秒前
科研通AI6应助酷酷的柚子采纳,获得10
39秒前
orixero应助long采纳,获得10
40秒前
joruruo发布了新的文献求助10
41秒前
hsyyk完成签到 ,获得积分10
43秒前
43秒前
我爱灌肠发布了新的文献求助10
44秒前
45秒前
45秒前
量子星尘发布了新的文献求助10
45秒前
小丸子发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431754
求助须知:如何正确求助?哪些是违规求助? 4544599
关于积分的说明 14193134
捐赠科研通 4463678
什么是DOI,文献DOI怎么找? 2446845
邀请新用户注册赠送积分活动 1438154
关于科研通互助平台的介绍 1414878