The Development of a PBPK Model for Atomoxetine Using Levels in Plasma, Saliva and Brain Extracellular Fluid in Patients with Normal and Deteriorated Kidney Function

基于生理学的药代动力学模型 阿托莫西汀 药代动力学 托莫西汀 唾液 细胞外液 化学 医学 药理学 微透析 内科学 注意缺陷多动障碍 细胞外 多巴胺 哌醋甲酯 生物化学 精神科
作者
Mo’tasem M. Alsmadi,Laith N. AL Eitan,Nasir Idkaidek,Karem H. Alzoubi
出处
期刊:Cns & Neurological Disorders-drug Targets [Bentham Science]
卷期号:21 (8): 704-716 被引量:10
标识
DOI:10.2174/1871527320666210621102437
摘要

Atomoxetine is a treatment for attention-deficit hyperactivity disorder. It inhibits Norepinephrine Transporters (NET) in the brain. Renal impairment can reduce hepatic CYP2D6 activity and atomoxetine elimination which may increase its body exposure. Atomoxetine can be secreted in saliva.The objective of this work was to test the hypothesis that atomoxetine saliva levels (sATX) can be used to predict ATX brain Extracellular Fluid (bECF) levels and their pharmacological effects in healthy subjects and those with End-Stage Renal Disease (ESRD).The pharmacokinetics of atomoxetine after intravenous administration to rats with chemically induced acute and chronic renal impairments were investigated. A physiologically-based pharmacokinetic (PBPK) model was built and verified in rats using previously published measured atomoxetine levels in plasma and brain tissue. The rat PBPK model was then scaled to humans and verified using published measured atomoxetine levels in plasma, saliva, and bECF.The rat PBPK model predicted the observed reduced atomoxetine clearance due to renal impairment in rats. The PBPK model predicted atomoxetine exposure in human plasma, sATX and bECF. Additionally, it predicted that ATX bECF levels needed to inhibit NET are achieved at 80 mg dose. In ESRD patients, the developed PBPK model predicted that the previously reported 65% increase in plasma exposure in these patients can be associated with a 63% increase in bECF. The PBPK simulations showed that there is a significant correlation between sATX and bECF in human.Saliva levels can be used to predict atomoxetine pharmacological response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LJQ4o8完成签到,获得积分10
刚刚
lkc发布了新的文献求助10
刚刚
刚刚
雨辰完成签到,获得积分10
刚刚
卫卫完成签到 ,获得积分10
刚刚
1秒前
现代剑成完成签到,获得积分10
2秒前
杨耑耑完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
jijahui完成签到,获得积分10
3秒前
帅气惜霜发布了新的文献求助10
3秒前
3秒前
马静雨发布了新的文献求助10
4秒前
李健应助聪明可爱小绘理采纳,获得10
4秒前
小田心完成签到,获得积分10
4秒前
虚心的幻翠完成签到 ,获得积分10
4秒前
潇洒的冷玉完成签到 ,获得积分10
4秒前
星辰大海应助szmsnail采纳,获得20
5秒前
小黄应助清欢采纳,获得10
5秒前
6秒前
6秒前
华清引发布了新的文献求助30
6秒前
jijahui发布了新的文献求助10
6秒前
7秒前
sweetbearm应助通~采纳,获得10
7秒前
7秒前
7秒前
小田心发布了新的文献求助10
7秒前
甜筒发布了新的文献求助10
8秒前
Steve发布了新的文献求助10
9秒前
mjc完成签到 ,获得积分10
9秒前
研一小刘发布了新的文献求助10
9秒前
9秒前
芳芳发布了新的文献求助10
9秒前
宵宵完成签到,获得积分10
9秒前
斯文黎云发布了新的文献求助10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794