电解质
阳极
相间
阴极
材料科学
电化学
锂(药物)
电池(电)
电极
储能
化学工程
金属锂
化学
热力学
物理
工程类
内分泌学
物理化学
功率(物理)
生物
医学
遗传学
作者
Chaojiang Niu,Dianying Liu,Joshua Lochala,Cassidy Anderson,Xia Cao,Mark Gross,Wu Xu,Ji‐Guang Zhang,M. Stanley Whittingham,Jie Xiao,Jun Liu
出处
期刊:Nature Energy
[Springer Nature]
日期:2021-06-28
卷期号:6 (7): 723-732
被引量:367
标识
DOI:10.1038/s41560-021-00852-3
摘要
The rechargeable lithium metal battery has attracted wide attention as a next-generation energy storage technology. However, simultaneously achieving high cell-level energy density and long cycle life in realistic batteries is still a great challenge. Here we investigate the degradation mechanisms of Li || LiNi0.6Mn0.2Co0.2O2 pouch cells and present fundamental linkages among Li thickness, electrolyte depletion and the structure evolution of solid–electrolyte interphase layers. Different cell failure processes are discovered when tuning the anode to cathode capacity ratio in compatible electrolytes. An optimal anode to cathode capacity ratio of 1:1 emerges because it balances well the rates of Li consumption, electrolyte depletion and solid–electrolyte interphase construction, thus decelerating the increase of cell polarization and extending cycle life. Contrary to conventional wisdom, long cycle life is observed by using ultra-thin Li (20 µm) in balanced cells. A prototype 350 Wh kg−1 pouch cell (2.0 Ah) achieves over 600 long stable cycles with 76% capacity retention without a sudden cell death.
科研通智能强力驱动
Strongly Powered by AbleSci AI