Joint adaptive transfer learning network for cross-domain fault diagnosis based on multi-layer feature fusion

计算机科学 学习迁移 特征学习 特征(语言学) 判别式 人工智能 领域(数学分析) 机器学习 接头(建筑物) 水准点(测量) 模式识别(心理学) 数据挖掘 工程类 数学分析 哲学 语言学 数学 建筑工程 地理 大地测量学
作者
Yimin Jiang,Tangbin Xia,Dong Wang,Kaigan Zhang,Lifeng Xi
出处
期刊:Neurocomputing [Elsevier]
卷期号:487: 228-242 被引量:16
标识
DOI:10.1016/j.neucom.2021.11.005
摘要

Traditional intelligent fault diagnosis models are required to be trained and tested under an identical probability distribution. However, the shift in data distributions is inevitable due to changes in environmental and operational conditions, which results in diagnostic performance degradation. Currently, transfer learning has been successfully applied to learn a discriminative diagnosis model in the presence of a shift. But conventional transfer learning approaches encounter obstacles without adequately considering the feature interactivity and transferable ability at different layers. In this study, a joint adaptive transfer learning framework based on multi-layer feature fusion for reliable cross-domain diagnosis is presented to address these issues. Firstly, the multilinear map is employed to implement a novel multi-layer feature fusion. This fusion is key to realizing a substantial improvement of feature representation capability and effectively embedding joint distribution of multi-layer features. Furthermore, a novel joint adaptive transfer learning (JATL) framework is devised to facilitate reliable cross-domain adaption by making utmost use of cross-domain-invariant features with a small amount of data. Experiments with different transfer scenarios on two benchmark datasets have been conducted, and experimental results demonstrate the superiority of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳冰烟完成签到,获得积分10
1秒前
雨雾完成签到,获得积分10
1秒前
斯文败类应助凶狠的乐巧采纳,获得10
1秒前
1秒前
生言生语完成签到,获得积分10
1秒前
alick发布了新的文献求助10
2秒前
钰c发布了新的文献求助10
2秒前
Maggie完成签到 ,获得积分10
2秒前
四月是一只爱猫的羊完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
打打应助嘟嘟请让一让采纳,获得10
4秒前
专一完成签到,获得积分10
4秒前
Lucas应助九川采纳,获得10
4秒前
yl关闭了yl文献求助
4秒前
5秒前
研友_VZG7GZ应助韩莎莎采纳,获得10
5秒前
5秒前
丘比特应助卡卡采纳,获得10
6秒前
6秒前
毛毛发布了新的文献求助10
6秒前
ljx完成签到 ,获得积分10
6秒前
活力山蝶应助小白采纳,获得10
9秒前
xg完成签到,获得积分10
9秒前
Zezezee发布了新的文献求助10
9秒前
笑点低可乐完成签到,获得积分10
10秒前
10秒前
坚强的樱发布了新的文献求助10
10秒前
10秒前
求解限发布了新的文献求助160
10秒前
11秒前
白宝宝北北白应助XIN采纳,获得10
11秒前
wenjian发布了新的文献求助10
11秒前
12秒前
华仔应助jy采纳,获得10
12秒前
hoongyan完成签到 ,获得积分10
12秒前
Ava应助aoxiangcaizi12采纳,获得10
14秒前
Amai完成签到,获得积分10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794