Cross-Modal Hybrid Feature Fusion for Image-Sentence Matching

计算机科学 人工智能 判决 特征(语言学) 相似性(几何) 模态(人机交互) 匹配(统计) 模式识别(心理学) 自然语言处理 图像(数学) 排名(信息检索) 情态动词 特征向量 数学 语言学 统计 哲学 化学 高分子化学
作者
Xing Xu,Yifan Wang,Yixuan He,Yang Yang,Alan Hanjalić,Heng Tao Shen
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:17 (4): 1-23 被引量:23
标识
DOI:10.1145/3458281
摘要

Image-sentence matching is a challenging task in the field of language and vision, which aims at measuring the similarities between images and sentence descriptions. Most existing methods independently map the global features of images and sentences into a common space to calculate the image-sentence similarity. However, the image-sentence similarity obtained by these methods may be coarse as (1) an intermediate common space is introduced to implicitly match the heterogeneous features of images and sentences in a global level, and (2) only the inter-modality relations of images and sentences are captured while the intra-modality relations are ignored. To overcome the limitations, we propose a novel Cross-Modal Hybrid Feature Fusion (CMHF) framework for directly learning the image-sentence similarity by fusing multimodal features with inter- and intra-modality relations incorporated. It can robustly capture the high-level interactions between visual regions in images and words in sentences, where flexible attention mechanisms are utilized to generate effective attention flows within and across the modalities of images and sentences. A structured objective with ranking loss constraint is formed in CMHF to learn the image-sentence similarity based on the fused fine-grained features of different modalities bypassing the usage of intermediate common space. Extensive experiments and comprehensive analysis performed on two widely used datasets—Microsoft COCO and Flickr30K—show the effectiveness of the hybrid feature fusion framework in CMHF, in which the state-of-the-art matching performance is achieved by our proposed CMHF method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL发布了新的文献求助10
刚刚
刚刚
2秒前
zcD关注了科研通微信公众号
3秒前
杨金城发布了新的文献求助10
3秒前
学海驰航发布了新的文献求助10
3秒前
函王发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
HMF完成签到,获得积分10
5秒前
jenningseastera应助hkh采纳,获得10
6秒前
快乐难敌完成签到,获得积分10
6秒前
666完成签到,获得积分20
6秒前
星灵完成签到,获得积分10
6秒前
快乐难敌发布了新的文献求助10
8秒前
潇洒的炳发布了新的文献求助10
8秒前
归尘发布了新的文献求助50
9秒前
杨金城完成签到,获得积分10
9秒前
9秒前
9秒前
翻似烂柯人完成签到,获得积分10
9秒前
丘比特应助tuzhihong采纳,获得10
10秒前
cincrady完成签到,获得积分10
10秒前
无花果应助王梦晓采纳,获得10
11秒前
所所应助别偷我增肌粉采纳,获得10
11秒前
打打应助简单的银耳汤采纳,获得10
11秒前
深情安青应助一点采纳,获得10
11秒前
完美世界应助优美采梦采纳,获得10
11秒前
CipherSage应助风中的觅儿采纳,获得10
12秒前
damahou完成签到,获得积分10
12秒前
远道完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
打工肥仔应助雪兔妹妹采纳,获得10
15秒前
一叶完成签到 ,获得积分10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271