Deep Learning-Based Image Conversion Improves the Reproducibility of Computed Tomography Radiomics Features

再现性 无线电技术 特征(语言学) 一致相关系数 人工智能 基本事实 模式识别(心理学) 成像体模 计算机科学 残余物 计算机断层摄影术 放射科 核医学 医学 数学 统计 算法 语言学 哲学
作者
Seul Bi Lee,Yeon Jin Cho,Yong Woo Hong,Dawun Jeong,Jina Lee,Soohyun Kim,Seung–Hyun Lee,Young Hun Choi
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:57 (5): 308-317 被引量:16
标识
DOI:10.1097/rli.0000000000000839
摘要

This study aimed to evaluate the usefulness of deep learning-based image conversion to improve the reproducibility of computed tomography (CT) radiomics features.This study was conducted using an abdominal phantom with liver nodules. We developed an image conversion algorithm using a residual feature aggregation network to reproduce radiomics features with CT images under various CT protocols and reconstruction kernels. External validation was performed using images from different scanners, consisting of 8 different protocols. To evaluate the variability of radiomics features, regions of interest (ROIs) were drawn by targeting the liver parenchyma, vessels, paraspinal area, and liver nodules. We extracted 18 first-order, 68 second-order, and 688 wavelet radiomics features. Measurement variability was assessed using the concordance correlation coefficient (CCC), compared with the ground-truth image.In the ROI-based analysis, there was an 83.3% improvement of CCC (80/96; 4 ROIs with 3 categories of radiomics features and 8 protocols) in synthetic images compared with the original images. Among them, the 56 CCC pairs showed a significant increase after image synthesis. In the radiomics feature-based analysis, 62.0% (3838 of 6192; 774 radiomics features with 8 protocols) features showed increased CCC after image synthesis, and a significant increase was noted in 26.9% (1663 of 6192) features. In particular, the first-order feature (79.9%, 115/144) showed better improvement in terms of the reproducibility of radiomics feature than the second-order (59.9%, 326/544) or wavelet feature (61.7%, 3397/5504).Our study demonstrated that a deep learning model for image conversion can improve the reproducibility of radiomics features across various CT protocols, reconstruction kernels, and CT scanners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
领导范儿应助WN采纳,获得10
4秒前
hh完成签到,获得积分10
4秒前
猪猪hero发布了新的文献求助10
4秒前
karate09judges完成签到 ,获得积分10
5秒前
Liufgui应助独特元蝶采纳,获得10
5秒前
8秒前
潇湘雪月发布了新的文献求助10
9秒前
12秒前
酷波er应助hello采纳,获得10
12秒前
12秒前
啦啦发布了新的文献求助10
12秒前
唯美发布了新的文献求助10
16秒前
hnlgdx发布了新的文献求助10
20秒前
一根完成签到,获得积分20
20秒前
七月完成签到 ,获得积分10
22秒前
xiaojiahuo完成签到,获得积分10
23秒前
24秒前
猪猪hero发布了新的文献求助10
24秒前
自信不愁完成签到,获得积分10
25秒前
潇湘雪月发布了新的文献求助10
26秒前
Arthur完成签到,获得积分10
27秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
芋孟齐完成签到,获得积分20
28秒前
猪猪hero发布了新的文献求助10
30秒前
31秒前
高手发布了新的文献求助10
31秒前
31秒前
WN发布了新的文献求助10
31秒前
超级的鹅发布了新的文献求助10
34秒前
FashionBoy应助axin采纳,获得10
35秒前
胡霖完成签到,获得积分10
36秒前
流飒完成签到,获得积分10
36秒前
香蕉觅云应助牛马码字员采纳,获得10
37秒前
猪猪hero发布了新的文献求助10
37秒前
CAOHOU应助林sir采纳,获得10
37秒前
37秒前
甜甜亦巧完成签到,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136