Deep Learning-Based Image Conversion Improves the Reproducibility of Computed Tomography Radiomics Features

再现性 无线电技术 特征(语言学) 一致相关系数 人工智能 基本事实 模式识别(心理学) 成像体模 计算机科学 残余物 计算机断层摄影术 放射科 核医学 医学 数学 统计 算法 语言学 哲学
作者
Seul Bi Lee,Yeon Jin Cho,Yong Woo Hong,Dawun Jeong,Jina Lee,Soohyun Kim,Seung–Hyun Lee,Young Hun Choi
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (5): 308-317 被引量:16
标识
DOI:10.1097/rli.0000000000000839
摘要

This study aimed to evaluate the usefulness of deep learning-based image conversion to improve the reproducibility of computed tomography (CT) radiomics features.This study was conducted using an abdominal phantom with liver nodules. We developed an image conversion algorithm using a residual feature aggregation network to reproduce radiomics features with CT images under various CT protocols and reconstruction kernels. External validation was performed using images from different scanners, consisting of 8 different protocols. To evaluate the variability of radiomics features, regions of interest (ROIs) were drawn by targeting the liver parenchyma, vessels, paraspinal area, and liver nodules. We extracted 18 first-order, 68 second-order, and 688 wavelet radiomics features. Measurement variability was assessed using the concordance correlation coefficient (CCC), compared with the ground-truth image.In the ROI-based analysis, there was an 83.3% improvement of CCC (80/96; 4 ROIs with 3 categories of radiomics features and 8 protocols) in synthetic images compared with the original images. Among them, the 56 CCC pairs showed a significant increase after image synthesis. In the radiomics feature-based analysis, 62.0% (3838 of 6192; 774 radiomics features with 8 protocols) features showed increased CCC after image synthesis, and a significant increase was noted in 26.9% (1663 of 6192) features. In particular, the first-order feature (79.9%, 115/144) showed better improvement in terms of the reproducibility of radiomics feature than the second-order (59.9%, 326/544) or wavelet feature (61.7%, 3397/5504).Our study demonstrated that a deep learning model for image conversion can improve the reproducibility of radiomics features across various CT protocols, reconstruction kernels, and CT scanners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chridy发布了新的文献求助10
1秒前
1秒前
asipilin完成签到,获得积分10
1秒前
鼻揩了转去应助lixoii采纳,获得20
1秒前
2秒前
万能图书馆应助Steve采纳,获得10
3秒前
3秒前
3秒前
颛颛完成签到 ,获得积分10
4秒前
不安钢铁侠完成签到,获得积分10
4秒前
学术z完成签到,获得积分10
4秒前
小二郎应助yty采纳,获得10
4秒前
神帅酷哥完成签到,获得积分10
6秒前
6秒前
ljw完成签到,获得积分10
6秒前
xzy发布了新的文献求助20
6秒前
6秒前
守夜人发布了新的文献求助10
7秒前
7秒前
7秒前
珲雯发布了新的文献求助10
8秒前
8秒前
德尔塔捱斯完成签到,获得积分10
8秒前
小夏完成签到 ,获得积分0
9秒前
luuuuuu完成签到,获得积分10
9秒前
太阳alright完成签到,获得积分10
9秒前
雨辰发布了新的文献求助10
10秒前
在水一方应助lai采纳,获得10
10秒前
Yiiimmmwang完成签到,获得积分20
10秒前
FashionBoy应助小田心采纳,获得10
10秒前
Orange应助芳芳采纳,获得10
11秒前
汉堡包应助斯文黎云采纳,获得10
11秒前
通~发布了新的文献求助10
12秒前
qifeng完成签到,获得积分10
12秒前
屹舟发布了新的文献求助10
12秒前
宇文数学完成签到 ,获得积分10
13秒前
13秒前
爆米花应助大方嵩采纳,获得10
13秒前
姚文超发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794