Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review

数字化病理学 深度学习 卷积神经网络 微卫星不稳定性 组学 计算机科学 人工智能 数据集成 机器学习 生物信息学 数据挖掘 生物 生物化学 微卫星 基因 等位基因
作者
Lucas Schneider,Sara Laiouar-Pedari,Sara Kuntz,Eva Krieghoff‐Henning,Achim Hekler,Jakob Nikolas Kather,Timo Gaiser,Stefan Fröhling,Titus J. Brinker
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:160: 80-91 被引量:51
标识
DOI:10.1016/j.ejca.2021.10.007
摘要

BackgroundOver the past decade, the development of molecular high-throughput methods (omics) increased rapidly and provided new insights for cancer research. In parallel, deep learning approaches revealed the enormous potential for medical image analysis, especially in digital pathology. Combining image and omics data with deep learning tools may enable the discovery of new cancer biomarkers and a more precise prediction of patient prognosis. This systematic review addresses different multimodal fusion methods of convolutional neural network-based image analyses with omics data, focussing on the impact of data combination on the classification performance.MethodsPubMed was screened for peer-reviewed articles published in English between January 2015 and June 2021 by two independent researchers. Search terms related to deep learning, digital pathology, omics, and multimodal fusion were combined.ResultsWe identified a total of 11 studies meeting the inclusion criteria, namely studies that used convolutional neural networks for haematoxylin and eosin image analysis of patients with cancer in combination with integrated omics data. Publications were categorised according to their endpoints: 7 studies focused on survival analysis and 4 studies on prediction of cancer subtypes, malignancy or microsatellite instability with spatial analysis.ConclusionsImage-based classifiers already show high performances in prognostic and predictive cancer diagnostics. The integration of omics data led to improved performance in all studies described here. However, these are very early studies that still require external validation to demonstrate their generalisability and robustness. Further and more comprehensive studies with larger sample sizes are needed to evaluate performance and determine clinical benefits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤觅露完成签到,获得积分10
刚刚
笑嘻嘻完成签到,获得积分10
2秒前
丘比特应助小鲤鱼在睡觉采纳,获得10
2秒前
CC完成签到,获得积分10
3秒前
Vanff完成签到,获得积分10
3秒前
疯狂的灵发布了新的文献求助10
3秒前
4秒前
大模型应助wwwstt采纳,获得10
5秒前
5秒前
6秒前
健忘天问完成签到 ,获得积分20
6秒前
7秒前
7秒前
8秒前
舒先生完成签到,获得积分10
8秒前
小鲤鱼在睡觉完成签到,获得积分10
9秒前
风花雪月完成签到 ,获得积分10
9秒前
萧水白发布了新的文献求助100
10秒前
呱呱完成签到,获得积分10
10秒前
阳光下的味道完成签到,获得积分10
11秒前
成就猫咪发布了新的文献求助10
11秒前
黑土完成签到 ,获得积分10
12秒前
戚鹊发布了新的文献求助10
12秒前
13秒前
大个应助minrui采纳,获得10
14秒前
Ava应助神勇冰岚采纳,获得10
15秒前
Leonardi应助研友_24789采纳,获得300
15秒前
17秒前
Rui发布了新的文献求助10
17秒前
18秒前
芋泥波波完成签到,获得积分10
20秒前
21秒前
璇璇璇发布了新的文献求助10
21秒前
在水一方应助疯狂的灵采纳,获得10
21秒前
yy发布了新的文献求助10
22秒前
IZhuangXH发布了新的文献求助20
24秒前
不安海燕发布了新的文献求助10
24秒前
科研通AI2S应助和平港湾采纳,获得10
24秒前
wsf2023发布了新的文献求助10
25秒前
潇洒自由基完成签到 ,获得积分10
25秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147903
求助须知:如何正确求助?哪些是违规求助? 2798930
关于积分的说明 7832525
捐赠科研通 2455943
什么是DOI,文献DOI怎么找? 1307025
科研通“疑难数据库(出版商)”最低求助积分说明 627966
版权声明 601587