Optimisation of an Electrical Impedance Sensor for Use in Microfluidic Chip Electrophoresis

电阻抗 线性 微流控 灵敏度(控制系统) 电子工程 频道(广播) 材料科学 炸薯条 声学 工程类 电气工程 纳米技术 物理
作者
Martin Hantschke,Iasonas F. Triantis
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (1): 16-24 被引量:3
标识
DOI:10.1109/jsen.2021.3127320
摘要

Label-free measurements using impedance sensing could enable microfluidic chip electrophoresis (ME) to be used in point-of-care (POC) diagnostics. However, impedance sensing methods reported in this field need considerable optimisation. GOAL: Develop a novel design process for optimising tetrapolar electrical impedance measurement (TEIM) sensor performance in ME applications through a systematic investigation a) of the impact of a TEIM sensor’s design parameters on its performance in ME and b) of the relationship between the above parameters with those of the microfluidic channel and the sample to be sensed. METHODS: 3D FEM sensitivity simulations, verified experimentally, were carried out to study the impact of sensor and channel parameters on the measured impedance and their interrelationship. Subsequently, the impact of sensor parameters on sensing a sample band’s conductivity and size was investigated. RESULTS: The impact of channel dimensions on transfer impedance measurements is significant. The non-linearity reported for transfer impedance measurement of volume conductors can be manipulated by appropriate sensor parameter design. The sensor performance can be optimised by designing electrode length and measurement electrode distance in relation to the channel height and sample band length, respectively. The sensor performance is not affected by the injection electrode distance. CONCLUSION: There is a relationship between sensor, channel and band parameters and this warrants establishing a systematic design process of TEIM sensors in ME. SIGNIFICANCE: This paper presents a novel approach to optimising the design of TEIM sensors in ME potentially providing significant performance improvements and thus allowing for label-free POC electrophoresis diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助大吴克采纳,获得10
1秒前
老实雁蓉完成签到,获得积分10
1秒前
良辰应助zjh采纳,获得10
1秒前
yulong完成签到 ,获得积分10
2秒前
热心的早晨完成签到,获得积分10
2秒前
如此纠结完成签到,获得积分10
2秒前
多多就是小豆芽完成签到 ,获得积分10
3秒前
3秒前
Owen应助Lwxbb采纳,获得10
3秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
3秒前
小小杜完成签到,获得积分10
3秒前
初心完成签到,获得积分20
3秒前
丽丽完成签到 ,获得积分10
3秒前
学术蟑螂发布了新的文献求助10
3秒前
文艺的竺完成签到,获得积分10
4秒前
小林太郎应助斯奈克采纳,获得20
4秒前
4秒前
情怀应助执笔曦倾年采纳,获得10
4秒前
4秒前
4秒前
4秒前
科研民工完成签到,获得积分10
5秒前
FR完成签到,获得积分10
5秒前
6秒前
小马甲应助浩浩大人采纳,获得10
6秒前
6秒前
小小杜发布了新的文献求助20
6秒前
打打应助袁国惠采纳,获得10
6秒前
6秒前
哈哈哈完成签到,获得积分10
7秒前
小张发布了新的文献求助10
7秒前
温柔若完成签到,获得积分10
7秒前
称心的问薇完成签到,获得积分10
8秒前
8秒前
高兴的半凡完成签到 ,获得积分10
9秒前
123完成签到,获得积分10
9秒前
Answer完成签到,获得积分10
9秒前
诚心凝旋发布了新的文献求助10
9秒前
孟柠柠完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740