Microbes drive global soil nitrogen mineralization and availability

矿化(土壤科学) 氮气循环 环境科学 生物量(生态学) 生物地球化学循环 土壤科学 氮气 生态系统 农学 土壤水分 环境化学 生态学 生物 化学 有机化学
作者
Zhaolei Li,Dashuan Tian,Bingxue Wang,Jinsong Wang,Song Wang,Han Y. H. Chen,Xiaofeng Xu,Changhui Wang,Nianpeng He,Shuli Niu
出处
期刊:Global Change Biology [Wiley]
卷期号:25 (3): 1078-1088 被引量:295
标识
DOI:10.1111/gcb.14557
摘要

Soil net nitrogen mineralization rate (Nmin ), which is critical for soil nitrogen availability and plant growth, is thought to be primarily controlled by climate and soil physical and/or chemical properties. However, the role of microbes on regulating soil Nmin has not been evaluated on the global scale. By compiling 1565 observational data points of potential net Nmin from 198 published studies across terrestrial ecosystems, we found that Nmin significantly increased with soil microbial biomass, total nitrogen, and mean annual precipitation, but decreased with soil pH. The variation of Nmin was ascribed predominantly to soil microbial biomass on global and biome scales. Mean annual precipitation, soil pH, and total soil nitrogen significantly influenced Nmin through soil microbes. The structural equation models (SEM) showed that soil substrates were the main factors controlling Nmin when microbial biomass was excluded. Microbe became the primary driver when it was included in SEM analysis. SEM with soil microbial biomass improved the Nmin prediction by 19% in comparison with that devoid of soil microbial biomass. The changes in Nmin contributed the most to global soil NH4+ -N variations in contrast to climate and soil properties. This study reveals the complex interactions of climate, soil properties, and microbes on Nmin and highlights the importance of soil microbial biomass in determining Nmin and nitrogen availability across the globe. The findings necessitate accurate representation of microbes in Earth system models to better predict nitrogen cycle under global change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
机智静曼发布了新的文献求助10
2秒前
2秒前
2秒前
黄紫红发布了新的文献求助10
3秒前
3秒前
Starry发布了新的文献求助10
4秒前
4秒前
4秒前
Novermber发布了新的文献求助10
4秒前
4秒前
研友_LX6AoZ发布了新的文献求助10
4秒前
子车茗应助jaslek采纳,获得10
6秒前
222完成签到,获得积分10
6秒前
vicky发布了新的文献求助10
6秒前
科研废物发布了新的文献求助10
6秒前
7秒前
景自端发布了新的文献求助10
7秒前
7秒前
7秒前
美好的凌兰完成签到,获得积分10
8秒前
JamesPei应助包容若风采纳,获得10
9秒前
青藤发布了新的文献求助10
9秒前
alan完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
陈军应助兔兔酱采纳,获得10
11秒前
11秒前
11秒前
Yin发布了新的文献求助10
11秒前
12秒前
nn发布了新的文献求助10
12秒前
斯文败类应助小谌谌采纳,获得10
12秒前
wanwan完成签到,获得积分10
12秒前
我是老大应助饼饼采纳,获得10
12秒前
调研昵称发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148815
求助须知:如何正确求助?哪些是违规求助? 2799847
关于积分的说明 7837294
捐赠科研通 2457351
什么是DOI,文献DOI怎么找? 1307824
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663