化学
羟基自由基
氯
过硫酸盐
过氧化氢
降级(电信)
激进的
硫酸盐
动力学
羟基化
核化学
无机化学
光化学
有机化学
催化作用
酶
物理
电信
量子力学
计算机科学
作者
Xi Zhao,Jin Jiang,Su-Yan Pang,Chaoting Guan,Juan Li,Zhen Wang,Jun Ma,Congwei Luo
出处
期刊:Chemosphere
[Elsevier]
日期:2019-04-01
卷期号:221: 270-277
被引量:47
标识
DOI:10.1016/j.chemosphere.2018.12.162
摘要
In this study, the degradation kinetics of iopamidol (IPM) by three different UV-based oxidation processes including UV/hydrogen peroxide (H2O2), UV/persulfate (PDS) and UV/chlorine (NaClO) were examined and the potential formation of iodinated disinfection byproducts (I-DBPs) in these processes followed by sequential chlorination was comparatively investigated. Increasing pH led to the decrease of IPM degradation rate in UV/NaClO, while it showed negligible impact in UV/PDS and UV/H2O2. Common background constituents such as chloride ions (Cl−), carbonate (HCO3−) and natural organic matter (NOM) inhibited IPM degradation in UV/H2O2 and UV/PDS, while IPM degradation in UV/NaClO was only suppressed by NOM but not Cl− and HCO3−. The differences in transformation products of IPM treated by hydroxyl radical (HO*), sulfate radical (SO4*-), as well as Cl2*- and ClO* generated in these processes, respectively, were also analyzed. The results suggested that hydroxyl radical (HO*) preferred to form hydroxylated derivatives. Sulfate radical (SO4*-) preferred to oxidize amino group of IPM to nitro group, while Cl2*- and ClO* favored the generation of chlorine-containing products. Moreover, specific I-DBPs (i.e., iodoform (IF) and monoiodacetic acid (MIAA)) were detected in the three processes followed by chlorination. The addition of NOM had little effect on IF formation of three processes, while MIAA formation decreased in all processes except UV/H2O2. Given that the formation of I-DBPs in UV/NaClO was less than those formed in the other two processes, UV/NaClO seems to be a more promising strategy for effectively removing IPM with alleviation of I-DBPs in treated water effluents.
科研通智能强力驱动
Strongly Powered by AbleSci AI