Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning

医学 分割 邦费罗尼校正 数据集 人工智能 放射科 肝细胞癌 腹部 卷积神经网络 标准差 核医学 内科学 统计 计算机科学 数学
作者
Alexander D. Weston,Panagiotis Korfiatis,Timothy L. Kline,Kenneth A. Philbrick,Petro Kostandy,Tomas Sakinis,Motokazu Sugimoto,Naoki Takahashi,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
卷期号:290 (3): 669-679 被引量:297
标识
DOI:10.1148/radiol.2018181432
摘要

Purpose To develop and evaluate a fully automated algorithm for segmenting the abdomen from CT to quantify body composition. Materials and Methods For this retrospective study, a convolutional neural network based on the U-Net architecture was trained to perform abdominal segmentation on a data set of 2430 two-dimensional CT examinations and was tested on 270 CT examinations. It was further tested on a separate data set of 2369 patients with hepatocellular carcinoma (HCC). CT examinations were performed between 1997 and 2015. The mean age of patients was 67 years; for male patients, it was 67 years (range, 29-94 years), and for female patients, it was 66 years (range, 31-97 years). Differences in segmentation performance were assessed by using two-way analysis of variance with Bonferroni correction. Results Compared with reference segmentation, the model for this study achieved Dice scores (mean ± standard deviation) of 0.98 ± 0.03, 0.96 ± 0.02, and 0.97 ± 0.01 in the test set, and 0.94 ± 0.05, 0.92 ± 0.04, and 0.98 ± 0.02 in the HCC data set, for the subcutaneous, muscle, and visceral adipose tissue compartments, respectively. Performance met or exceeded that of expert manual segmentation. Conclusion Model performance met or exceeded the accuracy of expert manual segmentation of CT examinations for both the test data set and the hepatocellular carcinoma data set. The model generalized well to multiple levels of the abdomen and may be capable of fully automated quantification of body composition metrics in three-dimensional CT examinations. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Chang in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助actor2006采纳,获得10
1秒前
1秒前
1秒前
1秒前
wtldkz发布了新的文献求助10
2秒前
zhoutian发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
zhou_完成签到,获得积分10
3秒前
科研通AI6应助朴实曼岚采纳,获得10
3秒前
领导范儿应助汀汀采纳,获得10
3秒前
此木本去一应助tomato采纳,获得10
3秒前
4秒前
所所应助Shinchan采纳,获得10
4秒前
BDH完成签到,获得积分20
5秒前
香菜头发布了新的文献求助10
5秒前
林珍发布了新的文献求助10
5秒前
SQDHZJ发布了新的文献求助10
6秒前
GG波波发布了新的文献求助10
8秒前
吴筮发布了新的文献求助10
8秒前
深情安青应助姜萌萌采纳,获得10
9秒前
niumi190完成签到,获得积分0
10秒前
11231发布了新的文献求助10
10秒前
斯文败类应助平淡夏云采纳,获得10
11秒前
gz发布了新的文献求助10
11秒前
12秒前
科研通AI6应助Shinchan采纳,获得10
12秒前
牛牛最棒完成签到 ,获得积分10
12秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
小蘑菇应助wtldkz采纳,获得10
16秒前
默默的妙竹完成签到 ,获得积分10
16秒前
裴果发布了新的文献求助10
17秒前
Paul111发布了新的文献求助10
18秒前
19秒前
Jes发布了新的文献求助30
19秒前
21秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715