亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning

医学 分割 邦费罗尼校正 数据集 人工智能 放射科 肝细胞癌 腹部 卷积神经网络 标准差 核医学 内科学 统计 计算机科学 数学
作者
Alexander D. Weston,Panagiotis Korfiatis,Timothy L. Kline,Kenneth A. Philbrick,Petro Kostandy,Tomas Sakinis,Motokazu Sugimoto,Naoki Takahashi,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
卷期号:290 (3): 669-679 被引量:297
标识
DOI:10.1148/radiol.2018181432
摘要

Purpose To develop and evaluate a fully automated algorithm for segmenting the abdomen from CT to quantify body composition. Materials and Methods For this retrospective study, a convolutional neural network based on the U-Net architecture was trained to perform abdominal segmentation on a data set of 2430 two-dimensional CT examinations and was tested on 270 CT examinations. It was further tested on a separate data set of 2369 patients with hepatocellular carcinoma (HCC). CT examinations were performed between 1997 and 2015. The mean age of patients was 67 years; for male patients, it was 67 years (range, 29-94 years), and for female patients, it was 66 years (range, 31-97 years). Differences in segmentation performance were assessed by using two-way analysis of variance with Bonferroni correction. Results Compared with reference segmentation, the model for this study achieved Dice scores (mean ± standard deviation) of 0.98 ± 0.03, 0.96 ± 0.02, and 0.97 ± 0.01 in the test set, and 0.94 ± 0.05, 0.92 ± 0.04, and 0.98 ± 0.02 in the HCC data set, for the subcutaneous, muscle, and visceral adipose tissue compartments, respectively. Performance met or exceeded that of expert manual segmentation. Conclusion Model performance met or exceeded the accuracy of expert manual segmentation of CT examinations for both the test data set and the hepatocellular carcinoma data set. The model generalized well to multiple levels of the abdomen and may be capable of fully automated quantification of body composition metrics in three-dimensional CT examinations. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Chang in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
西山菩提完成签到,获得积分10
2秒前
6秒前
Mr发布了新的文献求助10
7秒前
lc发布了新的文献求助10
10秒前
14秒前
科研通AI6应助lc采纳,获得10
19秒前
Vintoe完成签到 ,获得积分10
31秒前
KINGAZX完成签到 ,获得积分10
1分钟前
1分钟前
GingerF应助bruna采纳,获得50
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助30
2分钟前
2分钟前
xaogny发布了新的文献求助10
2分钟前
2分钟前
3分钟前
无端发布了新的文献求助10
3分钟前
孟繁荣发布了新的文献求助10
3分钟前
鸭鸭完成签到 ,获得积分10
3分钟前
Robin完成签到,获得积分10
3分钟前
小马甲应助孟繁荣采纳,获得10
3分钟前
qc应助萝卜猪采纳,获得10
3分钟前
3分钟前
3分钟前
赘婿应助xaogny采纳,获得10
4分钟前
萝卜猪完成签到,获得积分10
4分钟前
lc发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
xaogny发布了新的文献求助10
4分钟前
NexusExplorer应助lc采纳,获得10
4分钟前
4分钟前
孟繁荣发布了新的文献求助10
4分钟前
4分钟前
5分钟前
科研通AI5应助白华苍松采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918239
求助须知:如何正确求助?哪些是违规求助? 4190933
关于积分的说明 13015499
捐赠科研通 3960710
什么是DOI,文献DOI怎么找? 2171348
邀请新用户注册赠送积分活动 1189396
关于科研通互助平台的介绍 1097765