Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning

医学 分割 邦费罗尼校正 数据集 人工智能 放射科 肝细胞癌 腹部 卷积神经网络 标准差 核医学 内科学 统计 计算机科学 数学
作者
Alexander D. Weston,Panagiotis Korfiatis,Timothy L. Kline,Kenneth A. Philbrick,Petro Kostandy,Tomas Sakinis,Motokazu Sugimoto,Naoki Takahashi,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
卷期号:290 (3): 669-679 被引量:297
标识
DOI:10.1148/radiol.2018181432
摘要

Purpose To develop and evaluate a fully automated algorithm for segmenting the abdomen from CT to quantify body composition. Materials and Methods For this retrospective study, a convolutional neural network based on the U-Net architecture was trained to perform abdominal segmentation on a data set of 2430 two-dimensional CT examinations and was tested on 270 CT examinations. It was further tested on a separate data set of 2369 patients with hepatocellular carcinoma (HCC). CT examinations were performed between 1997 and 2015. The mean age of patients was 67 years; for male patients, it was 67 years (range, 29-94 years), and for female patients, it was 66 years (range, 31-97 years). Differences in segmentation performance were assessed by using two-way analysis of variance with Bonferroni correction. Results Compared with reference segmentation, the model for this study achieved Dice scores (mean ± standard deviation) of 0.98 ± 0.03, 0.96 ± 0.02, and 0.97 ± 0.01 in the test set, and 0.94 ± 0.05, 0.92 ± 0.04, and 0.98 ± 0.02 in the HCC data set, for the subcutaneous, muscle, and visceral adipose tissue compartments, respectively. Performance met or exceeded that of expert manual segmentation. Conclusion Model performance met or exceeded the accuracy of expert manual segmentation of CT examinations for both the test data set and the hepatocellular carcinoma data set. The model generalized well to multiple levels of the abdomen and may be capable of fully automated quantification of body composition metrics in three-dimensional CT examinations. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Chang in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
橘子发布了新的文献求助10
2秒前
Sss句末完成签到,获得积分10
2秒前
2秒前
科研混子发布了新的文献求助10
3秒前
3秒前
凉笙墨染完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
SYLH应助TT采纳,获得10
3秒前
小肚溜圆完成签到,获得积分10
3秒前
Hxx完成签到,获得积分10
3秒前
zjt1111111完成签到,获得积分20
4秒前
ooo完成签到,获得积分10
4秒前
wwwwwwwwww完成签到,获得积分10
4秒前
leoan完成签到,获得积分10
5秒前
啦啦鱼发布了新的文献求助10
5秒前
照九州完成签到,获得积分10
5秒前
小红完成签到,获得积分10
5秒前
滑腻腻的小鱼完成签到,获得积分20
5秒前
李解万岁完成签到,获得积分10
6秒前
zjt1111111发布了新的文献求助10
7秒前
平淡南霜完成签到,获得积分10
7秒前
五一完成签到,获得积分10
7秒前
科研工作者完成签到,获得积分10
8秒前
爱岗敬业牛马人完成签到,获得积分10
8秒前
8秒前
YiWei发布了新的文献求助10
8秒前
molotov发布了新的文献求助10
9秒前
9秒前
9秒前
zzzzzz完成签到,获得积分10
10秒前
归尘完成签到,获得积分10
10秒前
打打应助小红采纳,获得10
10秒前
10秒前
共渡完成签到,获得积分10
10秒前
修杰应助科研通管家采纳,获得10
11秒前
修杰应助科研通管家采纳,获得10
11秒前
修杰应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044