Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning

医学 分割 邦费罗尼校正 数据集 人工智能 放射科 肝细胞癌 腹部 卷积神经网络 标准差 核医学 内科学 统计 计算机科学 数学
作者
Alexander D. Weston,Panagiotis Korfiatis,Timothy L. Kline,Kenneth A. Philbrick,Petro Kostandy,Tomas Sakinis,Motokazu Sugimoto,Naoki Takahashi,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
卷期号:290 (3): 669-679 被引量:259
标识
DOI:10.1148/radiol.2018181432
摘要

Purpose To develop and evaluate a fully automated algorithm for segmenting the abdomen from CT to quantify body composition. Materials and Methods For this retrospective study, a convolutional neural network based on the U-Net architecture was trained to perform abdominal segmentation on a data set of 2430 two-dimensional CT examinations and was tested on 270 CT examinations. It was further tested on a separate data set of 2369 patients with hepatocellular carcinoma (HCC). CT examinations were performed between 1997 and 2015. The mean age of patients was 67 years; for male patients, it was 67 years (range, 29-94 years), and for female patients, it was 66 years (range, 31-97 years). Differences in segmentation performance were assessed by using two-way analysis of variance with Bonferroni correction. Results Compared with reference segmentation, the model for this study achieved Dice scores (mean ± standard deviation) of 0.98 ± 0.03, 0.96 ± 0.02, and 0.97 ± 0.01 in the test set, and 0.94 ± 0.05, 0.92 ± 0.04, and 0.98 ± 0.02 in the HCC data set, for the subcutaneous, muscle, and visceral adipose tissue compartments, respectively. Performance met or exceeded that of expert manual segmentation. Conclusion Model performance met or exceeded the accuracy of expert manual segmentation of CT examinations for both the test data set and the hepatocellular carcinoma data set. The model generalized well to multiple levels of the abdomen and may be capable of fully automated quantification of body composition metrics in three-dimensional CT examinations. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Chang in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助寒冷莫英采纳,获得10
刚刚
eddy发布了新的文献求助10
1秒前
xinyingking完成签到,获得积分10
1秒前
1秒前
1秒前
Luna发布了新的文献求助10
1秒前
呆萌尔蓝发布了新的文献求助10
1秒前
nyddyy发布了新的文献求助10
2秒前
今后应助野原采纳,获得10
3秒前
访烟发布了新的文献求助10
3秒前
3秒前
背后的鸭子完成签到 ,获得积分10
3秒前
wp发布了新的文献求助10
3秒前
英姑应助Mango采纳,获得10
3秒前
3秒前
SciGPT应助wtf采纳,获得10
4秒前
俊逸湘发布了新的文献求助10
4秒前
上官若男应助赫葛采纳,获得10
5秒前
liaoyoujiao发布了新的文献求助10
7秒前
天天快乐应助王某明采纳,获得10
7秒前
风语发布了新的文献求助10
7秒前
kg完成签到,获得积分10
8秒前
Luck7完成签到,获得积分10
8秒前
sofaa关注了科研通微信公众号
8秒前
cxlcxl发布了新的文献求助10
8秒前
9秒前
9秒前
访烟完成签到,获得积分10
9秒前
zzz发布了新的文献求助30
9秒前
10秒前
玖玖完成签到,获得积分10
10秒前
科研通AI2S应助小伙子采纳,获得10
10秒前
科研文献搬运工应助paws采纳,获得30
10秒前
CipherSage应助ZhouTY采纳,获得10
11秒前
11秒前
天天快乐应助pura卷卷采纳,获得10
12秒前
哈哈里完成签到 ,获得积分10
12秒前
糯米团子完成签到,获得积分10
12秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145912
求助须知:如何正确求助?哪些是违规求助? 2797359
关于积分的说明 7823805
捐赠科研通 2453697
什么是DOI,文献DOI怎么找? 1305818
科研通“疑难数据库(出版商)”最低求助积分说明 627574
版权声明 601491