数学
局部环
理想(伦理)
极大理想
自同态
对偶(语法数字)
纯数学
对偶(序理论)
维数(图论)
戒指(化学)
离散数学
组合数学
拓扑(电路)
法学
艺术
有机化学
化学
文学类
政治学
出处
期刊:Illinois Journal of Mathematics
[Duke University Press]
日期:2020-09-01
卷期号:64 (3)
被引量:6
标识
DOI:10.1215/00192082-8622656
摘要
Let R be a Cohen-Macaulay local ring possessing a canonical module. In this paper we consider when the maximal ideal of R is self-dual, i.e. it is isomorphic to its canonical dual as an R-module. local rings satisfying this condition are called Teter rings, and studied by Teter, Huneke-Vraciu, Ananthnarayan-Avramov-Moore, and so on. On the positive dimensional case, we show such rings are exactly the endomorphism rings of the maximal ideals of some Gorenstein local rings of dimension one. We also provide some connection between the self-duality of the maximal ideal and near Gorensteinness.
科研通智能强力驱动
Strongly Powered by AbleSci AI