光电流
材料科学
分解水
带隙
钙钛矿太阳能电池
析氧
太阳能电池
能量转换效率
可逆氢电极
钙钛矿(结构)
氧气
光电子学
制氢
氢
吸收(声学)
电极
锡酸盐
化学工程
光催化
催化作用
化学
工作电极
物理化学
电解质
电化学
冶金
生物化学
锌
有机化学
复合材料
工程类
作者
Myeongjin Kim,Byeongyong Lee,Hyun Ju,Jin Young Kim,Jooheon Kim,Seung Woo Lee
标识
DOI:10.1002/adma.201903316
摘要
Abstract To achieve excellent photoelectrochemical water‐splitting activity, photoanode materials with high light absorption and good charge‐separation efficiency are essential. One effective strategy for the production of materials satisfying these requirements is to adjust their band structure and corresponding bandgap energy by introducing oxygen vacancies. A simple chemical reduction method that can systematically generate oxygen vacancies in barium stannate (BaSnO 3 (BSO)) crystal is introduced, which thus allows for precise control of the bandgap energy. A BSO photoanode with optimum oxygen‐vacancy concentration (8.7%) exhibits high light‐absorption and good charge‐separation capabilities. After deposition of FeOOH/NiOOH oxygen evolution cocatalysts on its surface, this photoanode shows a remarkable photocurrent density of 7.32 mA cm −2 at a potential of 1.23 V versus a reversible hydrogen electrode under AM1.5G simulated sunlight. Moreover, a tandem device constructed with a perovskite solar cell exhibits an operating photocurrent density of 6.84 mA cm −2 and stable gas production with an average solar‐to‐hydrogen conversion efficiency of 7.92% for 100 h, thus functioning as an outstanding unbiased water‐splitting system.
科研通智能强力驱动
Strongly Powered by AbleSci AI