溴酸盐
光催化
可见光谱
电子顺磁共振
光化学
石墨烯
电子转移
氧化物
材料科学
化学
降级(电信)
离子
纳米技术
催化作用
光电子学
有机化学
物理
电信
核磁共振
计算机科学
作者
Amit Kumar,Gaurav Sharma,Mu. Naushad,Tansir Ahamad,Renato Cataluña Veses,Florian J. Stadler
标识
DOI:10.1016/j.cej.2019.03.196
摘要
Designing highly optical active photocatalytic heterojunctions with multi-pronged capabilities for environmental applications is still a challenge. In this work the photocatalytic potential of Ag2CrO4/Ag/BiFeO3@RGO was systematically tested via photo-reduction of BrO3−, degradation of Ciprofloxacin (CIF) and photo-reduction of CO2 under broad light spectrum. Among various samples ABR-8 exhibits 99.6% BrO3− photoreduction and 96.3% CIF photo-oxidation in 90 min (nearly 96% in 60 min). ABR-11 (with 11 wt% RGO) selectively generates 180 μmol g−1 of CH4 in 8 h under visible light (260 μmol g−1 under alkali activation) which is approximately 60 times than bare BiFeO3. The excellent performance of ABR series is attributed to successful formation of Z-scheme which assists in efficient charge transfer, reduced recombination and wide spectrum response. In addition the electron donation-mediation of plasmonic Ag0 and adsorption-electron mediation of reduced graphene oxide has a triggering effect on reductive and oxidative capabilities. The band structure analysis, scavenging experiments and electron spin resonance studies make it possible to predict a suitable mechanism for bromate reduction, CIF degradation and CH4 generation. Electron assisted BrO3− reduction, •OH and •O2− radicals powered CIF degradation by Z-scheme mechanism and multi-electron single step proton-coupled mechanism for highly selective CH4 production were predicted. The best performing photocatalyst retain over 95% of performance over five consecutive runs. Suitable optimisations lead to higher performance from BiFeO3 which bears many shortcomings via interfacial junction with Ag2CrO4 with triggering effect from metallic Ag and RGO. Intelligently designed junctions can thus show strong photo-oxidative and reductive capabilities with further scope of fine tuning. Hence this developed heterojunction can be sustainably utilized for multi-pollutant removal and energy/fuel production under broad spectrum of light.
科研通智能强力驱动
Strongly Powered by AbleSci AI