Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency

原人参二醇 酵母 化学 发酵 底盘 酿酒酵母 人参皂甙 人参 代谢工程 苷元 生物化学 糖苷 立体化学 替代医学 病理 工程类 医学 结构工程
作者
Pingping Wang,Wei Wei,Wei Ye,Xiaodong Li,Wenfang Zhao,Chengshuai Yang,Chaojing Li,Xing Yan,Zhihua Zhou
出处
期刊:Cell discovery [Springer Nature]
卷期号:5 (1) 被引量:139
标识
DOI:10.1038/s41421-018-0075-5
摘要

Synthetic biology approach has been frequently applied to produce plant rare bioactive compounds in microbial cell factories by fermentation. However, to reach an ideal manufactural efficiency, it is necessary to optimize the microbial cell factories systemically by boosting sufficient carbon flux to the precursor synthesis and tuning the expression level and efficiency of key bioparts related to the synthetic pathway. We previously developed a yeast cell factory to produce ginsenoside Rh2 from glucose. However, the ginsenoside Rh2 yield was too low for commercialization due to the low supply of the ginsenoside aglycone protopanaxadiol (PPD) and poor performance of the key UDP-glycosyltransferase (UGT) (biopart UGTPg45) in the final step of the biosynthetic pathway. In the present study, we constructed a PPD-producing chassis via modular engineering of the mevalonic acid pathway and optimization of P450 expression levels. The new yeast chassis could produce 529.0 mg/L of PPD in shake flasks and 11.02 g/L in 10 L fed-batch fermentation. Based on this high PPD-producing chassis, we established a series of cell factories to produce ginsenoside Rh2, which we optimized by improving the C3-OH glycosylation efficiency. We increased the copy number of UGTPg45, and engineered its promoter to increase expression levels. In addition, we screened for more efficient and compatible UGT bioparts from other plant species and mutants originating from the direct evolution of UGTPg45. Combining all engineered strategies, we built a yeast cell factory with the greatest ginsenoside Rh2 production reported to date, 179.3 mg/L in shake flasks and 2.25 g/L in 10 L fed-batch fermentation. The results set up a successful example for improving yeast cell factories to produce plant rare natural products, especially the glycosylated ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
在水一方应助迷路的忆之采纳,获得10
1秒前
Dead Cells完成签到,获得积分10
1秒前
着急的柔完成签到,获得积分10
1秒前
有魅力的小蜜蜂完成签到,获得积分10
2秒前
慕青应助lizhaonian采纳,获得10
2秒前
耍酷的傲霜完成签到,获得积分10
3秒前
善学以致用应助jjsun采纳,获得10
4秒前
EED应助文件撤销了驳回
4秒前
小蘑菇应助年轻的烨华采纳,获得10
5秒前
5秒前
zzz发布了新的文献求助10
6秒前
研友_Zzrx6Z完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
汉堡包应助NOTHING采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得50
9秒前
quhayley应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
坦率的匪应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得50
10秒前
orixero应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得50
10秒前
思源应助科研通管家采纳,获得10
10秒前
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
czh应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
11秒前
SYLH应助科研通管家采纳,获得50
11秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
斯文败类应助Keyl采纳,获得10
11秒前
褪黑素应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021