Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides

氧化还原 电化学 锂(药物) 氧气 化学 氧化物 金属 无机化学 析氧 材料科学 离子 电极 物理化学 有机化学 医学 内分泌学
作者
Jihyun Hong,William E. Gent,Penghao Xiao,Kipil Lim,Dong‐Hwa Seo,Jinpeng Wu,Peter M. Csernica,Christopher J. Takacs,Dennis Nordlund,Cheng‐Jun Sun,Kevin H. Stone,Donata Passarello,Wanli Yang,David Prendergast,Gerbrand Ceder,Michael F. Toney,William C. Chueh
出处
期刊:Nature Materials [Nature Portfolio]
卷期号:18 (3): 256-265 被引量:383
标识
DOI:10.1038/s41563-018-0276-1
摘要

Reversible high-voltage redox chemistry is an essential component of many electrochemical technologies, from (electro)catalysts to lithium-ion batteries. Oxygen-anion redox has garnered intense interest for such applications, particularly lithium-ion batteries, as it offers substantial redox capacity at more than 4 V versus Li/Li+ in a variety of oxide materials. However, oxidation of oxygen is almost universally correlated with irreversible local structural transformations, voltage hysteresis and voltage fade, which currently preclude its widespread use. By comprehensively studying the Li2−xIr1−ySnyO3 model system, which exhibits tunable oxidation state and structural evolution with y upon cycling, we reveal that this structure–redox coupling arises from the local stabilization of short approximately 1.8 Å metal–oxygen π bonds and approximately 1.4 Å O–O dimers during oxygen redox, which occurs in Li2−xIr1−ySnyO3 through ligand-to-metal charge transfer. Crucially, formation of these oxidized oxygen species necessitates the decoordination of oxygen to a single covalent bonding partner through formation of vacancies at neighbouring cation sites, driving cation disorder. These insights establish a point-defect explanation for why anion redox often occurs alongside local structural disordering and voltage hysteresis during cycling. Our findings offer an explanation for the unique electrochemical properties of lithium-rich layered oxides, with implications generally for the design of materials employing oxygen redox chemistry. Reversible high-voltage redox is a key component for electrochemical technologies from electrocatalysts to lithium-ion batteries. A point defect explanation for why anion redox occurs with local structural disordering and voltage hysteresis is proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZTX发布了新的文献求助10
1秒前
福福发布了新的文献求助10
2秒前
归尘发布了新的文献求助10
2秒前
英俊的如霜完成签到,获得积分10
2秒前
洋芋儿完成签到,获得积分10
2秒前
3秒前
叮当狗发布了新的文献求助10
4秒前
Xiao完成签到,获得积分20
5秒前
tttttewe完成签到,获得积分10
6秒前
6秒前
健壮惋清发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
发篇Sci不过分吧完成签到,获得积分20
9秒前
Rondab应助优美的问凝采纳,获得10
9秒前
霏冉完成签到,获得积分10
10秒前
13秒前
斯文败类应助爹爹采纳,获得10
14秒前
无花果应助虚心的小鸭子采纳,获得10
14秒前
fusion完成签到,获得积分10
14秒前
在水一方应助莉莉采纳,获得10
15秒前
15秒前
乐天发布了新的文献求助10
16秒前
ZTX完成签到,获得积分10
16秒前
无痕完成签到,获得积分10
18秒前
调皮的达完成签到,获得积分10
19秒前
认真的沛容完成签到 ,获得积分10
19秒前
fanyueyue应助Charming采纳,获得10
19秒前
20秒前
咎星完成签到,获得积分10
20秒前
Akim应助科学宇宙采纳,获得10
20秒前
脑洞疼应助风清扬采纳,获得10
20秒前
徐翩跹完成签到,获得积分20
20秒前
orixero应助Ode采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425