氧化还原
电化学
锂(药物)
氧气
化学
氧化物
金属
无机化学
析氧
材料科学
离子
电极
物理化学
有机化学
医学
内分泌学
作者
Jihyun Hong,William E. Gent,Penghao Xiao,Kipil Lim,Dong‐Hwa Seo,Jinpeng Wu,Peter M. Csernica,Christopher J. Takacs,Dennis Nordlund,Cheng‐Jun Sun,Kevin H. Stone,Donata Passarello,Wanli Yang,David Prendergast,Gerbrand Ceder,Michael F. Toney,William C. Chueh
出处
期刊:Nature Materials
[Springer Nature]
日期:2019-02-04
卷期号:18 (3): 256-265
被引量:336
标识
DOI:10.1038/s41563-018-0276-1
摘要
Reversible high-voltage redox chemistry is an essential component of many electrochemical technologies, from (electro)catalysts to lithium-ion batteries. Oxygen-anion redox has garnered intense interest for such applications, particularly lithium-ion batteries, as it offers substantial redox capacity at more than 4 V versus Li/Li+ in a variety of oxide materials. However, oxidation of oxygen is almost universally correlated with irreversible local structural transformations, voltage hysteresis and voltage fade, which currently preclude its widespread use. By comprehensively studying the Li2−xIr1−ySnyO3 model system, which exhibits tunable oxidation state and structural evolution with y upon cycling, we reveal that this structure–redox coupling arises from the local stabilization of short approximately 1.8 Å metal–oxygen π bonds and approximately 1.4 Å O–O dimers during oxygen redox, which occurs in Li2−xIr1−ySnyO3 through ligand-to-metal charge transfer. Crucially, formation of these oxidized oxygen species necessitates the decoordination of oxygen to a single covalent bonding partner through formation of vacancies at neighbouring cation sites, driving cation disorder. These insights establish a point-defect explanation for why anion redox often occurs alongside local structural disordering and voltage hysteresis during cycling. Our findings offer an explanation for the unique electrochemical properties of lithium-rich layered oxides, with implications generally for the design of materials employing oxygen redox chemistry. Reversible high-voltage redox is a key component for electrochemical technologies from electrocatalysts to lithium-ion batteries. A point defect explanation for why anion redox occurs with local structural disordering and voltage hysteresis is proposed.
科研通智能强力驱动
Strongly Powered by AbleSci AI