Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides

氧化还原 电化学 锂(药物) 氧气 化学 氧化物 金属 无机化学 析氧 材料科学 离子 电极 物理化学 有机化学 医学 内分泌学
作者
Jihyun Hong,William E. Gent,Penghao Xiao,Kipil Lim,Dong‐Hwa Seo,Jinpeng Wu,Peter M. Csernica,Christopher J. Takacs,Dennis Nordlund,Cheng‐Jun Sun,Kevin H. Stone,Donata Passarello,Wanli Yang,David Prendergast,Gerbrand Ceder,Michael F. Toney,William C. Chueh
出处
期刊:Nature Materials [Springer Nature]
卷期号:18 (3): 256-265 被引量:400
标识
DOI:10.1038/s41563-018-0276-1
摘要

Reversible high-voltage redox chemistry is an essential component of many electrochemical technologies, from (electro)catalysts to lithium-ion batteries. Oxygen-anion redox has garnered intense interest for such applications, particularly lithium-ion batteries, as it offers substantial redox capacity at more than 4 V versus Li/Li+ in a variety of oxide materials. However, oxidation of oxygen is almost universally correlated with irreversible local structural transformations, voltage hysteresis and voltage fade, which currently preclude its widespread use. By comprehensively studying the Li2−xIr1−ySnyO3 model system, which exhibits tunable oxidation state and structural evolution with y upon cycling, we reveal that this structure–redox coupling arises from the local stabilization of short approximately 1.8 Å metal–oxygen π bonds and approximately 1.4 Å O–O dimers during oxygen redox, which occurs in Li2−xIr1−ySnyO3 through ligand-to-metal charge transfer. Crucially, formation of these oxidized oxygen species necessitates the decoordination of oxygen to a single covalent bonding partner through formation of vacancies at neighbouring cation sites, driving cation disorder. These insights establish a point-defect explanation for why anion redox often occurs alongside local structural disordering and voltage hysteresis during cycling. Our findings offer an explanation for the unique electrochemical properties of lithium-rich layered oxides, with implications generally for the design of materials employing oxygen redox chemistry. Reversible high-voltage redox is a key component for electrochemical technologies from electrocatalysts to lithium-ion batteries. A point defect explanation for why anion redox occurs with local structural disordering and voltage hysteresis is proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
Hello应助科研通管家采纳,获得10
3秒前
Xeno应助科研通管家采纳,获得10
3秒前
赵yy应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
结实的傲儿完成签到,获得积分20
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
Mic应助科研通管家采纳,获得10
4秒前
小雨发布了新的文献求助30
4秒前
wanci应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
Hilda007应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
隐形曼青应助俭朴的慕凝采纳,获得10
4秒前
田様应助kk采纳,获得10
4秒前
赵yy应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得30
4秒前
4秒前
creasent应助科研通管家采纳,获得10
4秒前
浮游应助无奈敏采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
老阎应助科研通管家采纳,获得30
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
yyj完成签到,获得积分10
5秒前
LIO发布了新的文献求助10
6秒前
科研通AI2S应助栀一采纳,获得10
7秒前
lalala完成签到 ,获得积分10
8秒前
蒸汽的冰淇淋完成签到,获得积分10
8秒前
9秒前
健忘曼彤完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424782
求助须知:如何正确求助?哪些是违规求助? 4539099
关于积分的说明 14165553
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444061
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483