控制理论(社会学)
前馈
控制器(灌溉)
跟踪(教育)
跟踪误差
执行机构
计算机科学
弹道
趋同(经济学)
控制工程
信号(编程语言)
噪音(视频)
工程类
控制(管理)
人工智能
物理
经济
天文
图像(数学)
程序设计语言
生物
经济增长
教育学
心理学
农学
作者
Muhammad Shafiq,Ashraf Saleem,Mostefa Mesbah
标识
DOI:10.1016/j.sna.2018.05.010
摘要
Micro/nanopositioning systems commonly use piezoelectric actuators due to their high stiffness, fast response and ultra-high precision. However, three main factors affect their tracking performance, namely hysteresis, creep, and structural vibrations. To overcome these limitations, this paper proposes a new combined feedback and feedforward control strategy. Unlike most existing control algorithms for micro/nanopositioning systems, the new controller is a model-free learning-based capable of smoothly tracking continuous reference signals. It is further endowed with an ability to prevent fallacious learning associated with sensor noise and reference signal discontinuities. The paper also provides complete proofs for the convergence of the tracking error and boundedness of the control signals. Experimental trajectory tracking results obtained using the proposed controller applied on a commercially available amplified piezoelectric actuator verify the theoretical findings.
科研通智能强力驱动
Strongly Powered by AbleSci AI