多路复用
感应式传感器
数据采集
碎片
故障检测与隔离
电子工程
计算机科学
工程类
电气工程
执行机构
地质学
海洋学
操作系统
作者
Sen Wu,Zhijian Liu,Haichao Yuan,Kezhen Yu,Yuefeng Gao,Liankun Liu,Xinxiang Pan
出处
期刊:Micromachines
[Multidisciplinary Digital Publishing Institute]
日期:2019-04-13
卷期号:10 (4): 246-246
被引量:22
摘要
Inductive wear debris sensor has been widely used in real time machine lubricant oil condition monitoring and fault forecasting. However, the small sensing zone, which is designed for high sensitivity, of the existing sensors leads to low throughput. In order to improve the throughput, a novel multichannel wear debris sensor that is based on phase division multiplexing is presented. By introducing the phase shift circuit into the system, multiple sensing coils could work at different initial phases. Multiple signals of sensing coils could be combined into one output without information loss. Synchronized sampling is used for data recording, and output signals of multiple sensing coils are extracted from the recorded data. A four-channel wear debris sensor system was designed to demonstrate our method. Subsequently, crosstalk analysis, pseudo-dynamic testing and dynamic testing were conducted to check the sensing system. Results show that signals of four sensing coils could be simultaneously detected and the detection limit for ferrous wear debris is 33 μm. Using the presented method, real time wear debris detection in multiple channels could be achieved without increasing the number of excitation source and data acquisition equipment.
科研通智能强力驱动
Strongly Powered by AbleSci AI