参数化复杂度
百分位
分位数
数学
应用数学
核(代数)
蒙特卡罗方法
对数正态分布
重尾分布
分布(数学)
计算机科学
数学优化
统计
算法
离散数学
数学分析
作者
Christopher C. Hadlock,J. Eric Bickel
出处
期刊:Decision Analysis
[Institute for Operations Research and the Management Sciences]
日期:2019-01-31
卷期号:16 (1): 67-85
被引量:9
标识
DOI:10.1287/deca.2018.0376
摘要
Johnson quantile-parameterized distributions (J-QPDs) are parameterized by any symmetric percentile triplet (SPT) (e.g., the 10th–50th–90th) and support bounds. J-QPDs are smooth, highly flexible, and amenable to Monte Carlo simulation via inverse transform sampling. However, semibounded J-QPDs are limited to lognormal tails. In this paper we generalize the kernel distribution of J-QPD beyond the standard normal, generating new fat-tailed distribution systems that are more flexible than J-QPD. We also show how to augment the SPT/bound parameters with a tail parameter, lending separate control over the distribution body and tail. We then present advantages of our new generalized system over existing systems in the contexts of both expert elicitation and fitting to empirical data.
科研通智能强力驱动
Strongly Powered by AbleSci AI