再生制动器
能量回收
汽车工程
能量(信号处理)
制动器
航程(航空)
发动机制动
模式(计算机接口)
动态制动
工程类
练习场
缓速器
电动汽车
高效能源利用
能量平衡
模拟
计算机科学
功率(物理)
电气工程
航空航天工程
量子力学
生物
数学
统计
物理
操作系统
生态学
作者
Fenzhu Ji,Pan Yong,Yu Zhou,Feng Du,Qi Zhang,Li Guo
标识
DOI:10.1080/00423114.2019.1567927
摘要
Energy recovery is a key technology to improve energy efficiency and extend driving range of electric vehicle. It is still a challenging issue to maximise energy recovery. We present an energy recovery mode (mode A) which recovers braking energy under all situations that accelerator pedal (AP) is lifted, brake pedal (BP) is depressed, as well as AP and BP are released completely; and propose a control strategy of regenerative braking based on driver's intention identified by a fuzzy recognition method. Other two modes: (1) recovery braking energy only the BP is depressed (mode B), (2) no energy recovery, have been studied to compare with mode A. Simulations are carried out on different adhesion conditions. Recovered energy and driving range are also obtained under FTP75 driving cycle. Road test is implemented to validate simulation results. Results show that mode A can improve energy recovery by almost 15.8% compared with mode B, and extend driving range by almost 8.81% compared with mode B and 20.39% with the mode of no energy recovery; the control strategy of regenerative braking can balance energy recovery and braking stability. The proposed energy recovery mode provides a possibility to achieve a single-pedal design of the electric vehicle.
科研通智能强力驱动
Strongly Powered by AbleSci AI