材料科学
热解
碳纳米管
催化作用
镍
化学工程
扩展X射线吸收精细结构
氮化物
氮气
纳米颗粒
纳米技术
吸收光谱法
化学
冶金
有机化学
工程类
物理
量子力学
图层(电子)
作者
Shiyong Zhao,Yi Cheng,Jean‐Pierre Veder,Bernt Johannessen,Martin Saunders,Lianji Zhang,Chang Liu,Matthew F. Chisholm,Roland De Marco,Jian Liu,Shize Yang,San Ping Jiang
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2018-09-10
被引量:77
标识
DOI:10.1021/acsaem.8b00903
摘要
The practical application of single atom catalysts (SACs) is constrained by the low achievable loading of single metal atoms. Here, nickel SACs stabilized on a nitrogen-doped carbon nanotube structure (NiSA-N-CNT) with ultrahigh Ni atomic loading up to 20.3 wt % have been successfully synthesized using a new one-pot pyrolysis method employing Ni acetylacetonate (Ni(acac)2) and dicyandiamide (DCD) as precursors. The yield and formation of NiSA-N-CNT depends strongly on the Ni(acac)2/DCD ratio and annealing temperature. Pyrolysis at 350 and 650 °C led to the formation of Ni single atom dispersed melem and graphitic carbon nitride (Ni-melem and Ni-g-C3N4). Transition from a stacked and layered Ni-g-C3N4 structure to a bamboo-shaped tubular NiSA-N-CNT structure most likely occurs via a solid-to-solid curling or rolling-up mechanism, thermally activated at temperatures of 700–900 °C. Extended X-ray absorption fine structure (EXAFS) experiments and simulations show that Ni single atoms are stabilized in the N-CNT structure through nitrogen coordination, forming a structure with four nearest N coordination shell surrounded by two carbon shells, Ni–N4. The NiSA-N-CNT catalysts show an excellent activity and selectivity for the electrochemical reduction of CO2, achieving a turnover frequency (TOF) of 11.7 s–1 at −0.55 V (vs RHE), but a low activity for the O2 reduction and O2 evolution reactions, as compared to Ni nanoparticles supported on N-CNTs.
科研通智能强力驱动
Strongly Powered by AbleSci AI