Critical Role of Titanium in O3-Type Layered Cathode Materials for Sodium-Ion Batteries

材料科学 阴极 电化学 取代基 离子 氧气 结构稳定性 化学工程 密度泛函理论 纳米技术 电极 冶金 物理化学 立体化学 化学 有机化学 计算化学 工程类 结构工程
作者
Taesoon Hwang,Junghyun Lee,Seung Hyun Choi,Rye‐Gyeong Oh,Duho Kim,Maenghyo Cho,Woosuk Cho,Min‐Sik Park
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (34): 30894-30901 被引量:75
标识
DOI:10.1021/acsami.9b08987
摘要

Recently, the substitution of inactive elements has been reported as a promising strategy for improving the structural stability and electrochemical performance of layered cathode materials for sodium-ion batteries (SIBs). In this regard, we investigated the positive effects of inactive Ti substitution into O3-type NaFe0.25Ni0.25Mn0.5O2 based on first-principles calculations and electrochemical experiments. After Ti substitution, Na[Ti0.03(Fe0.25Ni0.25Mn0.5)0.97]O2 exhibits improved capacity retention and rate capability compared with Ti-free NaFe0.25Ni0.25Mn0.5O2. Such an improvement is primarily attributed to the enhanced structural stability and lowered activation energy for Na+ migration, which is induced by Ti substitution in the host structure. Based on first-principles calculations of the average net charges and partial densities of states, we suggest that Ti substitution effectively enhances the binding between transition metals and oxygen by increasing the oxygen electron density, which in turn lowers the energy barrier of Na+ migration, leading to a notable enhancement in the rate capability of Na[Ti0.03(Fe0.25Ni0.25Mn0.5)0.97]O2. Compared with other inactive elements (e.g., Al and Mg), Ti is a more suitable substituent for improving the electrochemical properties of layered cathode materials because of its large total charge variation contributing to capacity. The results of this study provide practical guidelines for developing highly reliable layered cathode materials for SIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助阔达的太阳采纳,获得10
1秒前
开朗的抽屉完成签到 ,获得积分10
1秒前
2秒前
WindChaser完成签到,获得积分10
2秒前
3秒前
taco发布了新的文献求助10
3秒前
米兰完成签到,获得积分10
4秒前
renxuda发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
7秒前
大苹果完成签到,获得积分10
7秒前
yy发布了新的文献求助10
8秒前
跳跃的邪欢完成签到,获得积分10
8秒前
9秒前
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
阿呆盘阿瓜完成签到,获得积分10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI5应助嘻嘻哈哈采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得30
11秒前
华仔应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
李闻闻发布了新的文献求助10
11秒前
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
万能图书馆应助幽默白竹采纳,获得10
12秒前
12秒前
jingzh发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192262
求助须知:如何正确求助?哪些是违规求助? 4375259
关于积分的说明 13624367
捐赠科研通 4229578
什么是DOI,文献DOI怎么找? 2320065
邀请新用户注册赠送积分活动 1318422
关于科研通互助平台的介绍 1268650