Prediction and optimization of chemical fiber spinning tension based on grey system theory

纺纱 张力(地质) 过程(计算) 均方预测误差 近似误差 MATLAB语言 加权 数学 计算机科学 算法 材料科学 物理 复合材料 压缩(物理) 声学 操作系统
作者
Qihong Zhou,Tianlun Wei,Yiping Qiu,Fangmin Tang,Lixin Yin,Xuehui Gan
出处
期刊:Textile Research Journal [SAGE]
卷期号:89 (15): 3067-3079 被引量:5
标识
DOI:10.1177/0040517518807439
摘要

Based on the grey prediction model, this paper studied the effect of the chemical fiber spinning process parameters on the winding tension. Suitable process parameters were selected to carry out grey incidence analysis with winding tension, and the feasibility of the grey prediction model in spinning tension prediction was validated by the designed experiments. The corresponding algorithm routines of various grey prediction models were written in MATLAB. The single-variable grey prediction model of GM(1,1) showed a higher prediction accuracy in the effect of the single process parameter changing on spinning tension; when multiple process parameters changed at the same time, the average modeling error of the MGM(1, n) multi-variable grey prediction model was 7.70%, and the maximum error was as high as 32.99%. The original MGM(1, n) model was optimized and the model background value was adjusted by using the auto-optimization and weighting method. The average modeling error of the improved model was reduced to 2.02%, which could meet the general accuracy requirement of tension prediction. Further combining fractional-order accumulation and adjusting the background value coefficient α and the cumulative order r jointly, the smallest prediction error was found among the 100,000 combinations, and the final error was further reduced to 1.30%. The results show that the grey prediction model is suitable and effective for predicting the spinning tension based on the process parameters. Appropriate model improvement mechanisms will increase the prediction accuracy significantly. This application provides a suitable method for spinning tension prediction, which has great significance for the tension control of chemical fiber products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppppppppp发布了新的文献求助10
1秒前
1秒前
wanci应助LDDD采纳,获得10
1秒前
挤蘑菇发布了新的文献求助10
1秒前
称心乐枫完成签到,获得积分10
2秒前
喜屿发布了新的文献求助10
2秒前
gao发布了新的文献求助10
2秒前
英姑应助代博士采纳,获得10
2秒前
3秒前
彭于晏应助涡卷采纳,获得10
3秒前
潇潇微雨发布了新的文献求助10
3秒前
3秒前
沐沧澜完成签到 ,获得积分10
3秒前
小谢完成签到,获得积分10
3秒前
紫帘沐琛发布了新的文献求助10
4秒前
fanzi完成签到 ,获得积分10
4秒前
Zehn发布了新的文献求助30
4秒前
4秒前
4秒前
bkagyin应助yuyijk采纳,获得10
5秒前
5秒前
5秒前
ions应助ffd采纳,获得10
5秒前
6秒前
zdl完成签到,获得积分10
6秒前
温暖眼神完成签到,获得积分10
6秒前
科研通AI5应助Uynaux采纳,获得10
6秒前
zzcres完成签到,获得积分10
7秒前
鲸是蓝色的鲸完成签到,获得积分10
7秒前
朝春日走去完成签到,获得积分10
7秒前
aldehyde应助凩飒采纳,获得100
8秒前
井小浩发布了新的文献求助10
8秒前
火星上的菲鹰应助fujun采纳,获得10
8秒前
碧蓝乐枫发布了新的文献求助10
9秒前
xkx006发布了新的文献求助10
9秒前
静静发布了新的文献求助10
9秒前
10秒前
真实的一鸣完成签到,获得积分10
10秒前
10秒前
xh完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3513684
求助须知:如何正确求助?哪些是违规求助? 3096044
关于积分的说明 9230299
捐赠科研通 2791134
什么是DOI,文献DOI怎么找? 1531650
邀请新用户注册赠送积分活动 711603
科研通“疑难数据库(出版商)”最低求助积分说明 706879