Hypergraph-Induced Convolutional Networks for Visual Classification

超图 卷积神经网络 计算机科学 成对比较 模式识别(心理学) 数据集 人工智能 图形 相关性 集合(抽象数据类型) 水准点(测量) 数据挖掘 理论计算机科学 数学 几何学 离散数学 程序设计语言 地理 大地测量学
作者
Heyuan Shi,Yubo Zhang,Zizhao Zhang,Nan Ma,Xibin Zhao,Yue Gao,Jun Sun
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 2963-2972 被引量:51
标识
DOI:10.1109/tnnls.2018.2869747
摘要

At present, convolutional neural networks (CNNs) have become popular in visual classification tasks because of their superior performance. However, CNN-based methods do not consider the correlation of visual data to be classified. Recently, graph convolutional networks (GCNs) have mitigated this problem by modeling the pairwise relationship in visual data. Real-world tasks of visual classification typically must address numerous complex relationships in the data, which are not fit for the modeling of the graph structure using GCNs. Therefore, it is vital to explore the underlying correlation of visual data. Regarding this issue, we propose a framework called the hypergraph-induced convolutional network to explore the high-order correlation in visual data during deep neural networks. First, a hypergraph structure is constructed to formulate the relationship in visual data. Then, the high-order correlation is optimized by a learning process based on the constructed hypergraph. The classification tasks are performed by considering the high-order correlation in the data. Thus, the convolution of the hypergraph-induced convolutional network is based on the corresponding high-order relationship, and the optimization on the network uses each data and considers the high-order correlation of the data. To evaluate the proposed hypergraph-induced convolutional network framework, we have conducted experiments on three visual data sets: the National Taiwan University 3-D model data set, Princeton Shape Benchmark, and multiview RGB-depth object data set. The experimental results and comparison in all data sets demonstrate the effectiveness of our proposed hypergraph-induced convolutional network compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
畅畅完成签到 ,获得积分10
1秒前
奋斗安莲发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
Derik完成签到,获得积分10
5秒前
Qxt发布了新的文献求助10
7秒前
8秒前
温水云发布了新的文献求助10
8秒前
GGGGEEEE应助许七安采纳,获得10
8秒前
杨烨华发布了新的文献求助10
8秒前
GGZ完成签到,获得积分10
12秒前
13秒前
13秒前
巴哒完成签到,获得积分10
13秒前
Siris发布了新的文献求助10
14秒前
杨烨华完成签到,获得积分20
15秒前
温水云完成签到,获得积分10
15秒前
Qxt完成签到,获得积分10
16秒前
17秒前
x1发布了新的文献求助10
19秒前
wc完成签到,获得积分20
19秒前
19秒前
怡然的醉易完成签到 ,获得积分10
20秒前
自然的飞鸟完成签到,获得积分10
20秒前
22秒前
小t要读top博完成签到,获得积分10
24秒前
25秒前
x1完成签到,获得积分10
25秒前
使命完成签到 ,获得积分10
26秒前
aqaqaqa完成签到,获得积分10
28秒前
28秒前
31秒前
非同小可发布了新的文献求助10
34秒前
敏感迎丝完成签到 ,获得积分10
35秒前
123完成签到,获得积分20
35秒前
大模型应助博修采纳,获得10
37秒前
39秒前
Singularity应助123采纳,获得10
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262667
求助须知:如何正确求助?哪些是违规求助? 2903265
关于积分的说明 8324749
捐赠科研通 2573377
什么是DOI,文献DOI怎么找? 1398211
科研通“疑难数据库(出版商)”最低求助积分说明 654024
邀请新用户注册赠送积分活动 632642