Hypergraph-Induced Convolutional Networks for Visual Classification

超图 卷积神经网络 计算机科学 成对比较 模式识别(心理学) 数据集 人工智能 图形 相关性 集合(抽象数据类型) 水准点(测量) 数据挖掘 理论计算机科学 数学 几何学 离散数学 程序设计语言 地理 大地测量学
作者
Heyuan Shi,Yubo Zhang,Zizhao Zhang,Nan Ma,Xibin Zhao,Yue Gao,Jun Sun
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 2963-2972 被引量:51
标识
DOI:10.1109/tnnls.2018.2869747
摘要

At present, convolutional neural networks (CNNs) have become popular in visual classification tasks because of their superior performance. However, CNN-based methods do not consider the correlation of visual data to be classified. Recently, graph convolutional networks (GCNs) have mitigated this problem by modeling the pairwise relationship in visual data. Real-world tasks of visual classification typically must address numerous complex relationships in the data, which are not fit for the modeling of the graph structure using GCNs. Therefore, it is vital to explore the underlying correlation of visual data. Regarding this issue, we propose a framework called the hypergraph-induced convolutional network to explore the high-order correlation in visual data during deep neural networks. First, a hypergraph structure is constructed to formulate the relationship in visual data. Then, the high-order correlation is optimized by a learning process based on the constructed hypergraph. The classification tasks are performed by considering the high-order correlation in the data. Thus, the convolution of the hypergraph-induced convolutional network is based on the corresponding high-order relationship, and the optimization on the network uses each data and considers the high-order correlation of the data. To evaluate the proposed hypergraph-induced convolutional network framework, we have conducted experiments on three visual data sets: the National Taiwan University 3-D model data set, Princeton Shape Benchmark, and multiview RGB-depth object data set. The experimental results and comparison in all data sets demonstrate the effectiveness of our proposed hypergraph-induced convolutional network compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
奋斗灵波发布了新的文献求助10
2秒前
药学牛马发布了新的文献求助10
2秒前
2秒前
科研通AI5应助WZ0904采纳,获得10
3秒前
叶未晞yi发布了新的文献求助10
4秒前
ipeakkka发布了新的文献求助10
5秒前
Jzhang应助迷人的映雁采纳,获得10
5秒前
5秒前
zzz完成签到,获得积分10
6秒前
6秒前
小安发布了新的文献求助10
6秒前
7秒前
叶未晞yi完成签到,获得积分10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得30
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
kilig应助科研通管家采纳,获得10
10秒前
10秒前
华仔应助科研通管家采纳,获得30
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
博ge发布了新的文献求助10
12秒前
13秒前
葶儿发布了新的文献求助10
13秒前
hgcyp完成签到,获得积分10
18秒前
ysh完成签到,获得积分10
18秒前
18秒前
20秒前
20秒前
21秒前
wang完成签到,获得积分10
22秒前
Jzhang应助Yimim采纳,获得10
23秒前
沐风发布了新的文献求助20
24秒前
汉关发布了新的文献求助10
26秒前
26秒前
葶儿完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824