Hypergraph-Induced Convolutional Networks for Visual Classification

超图 卷积神经网络 计算机科学 成对比较 模式识别(心理学) 数据集 人工智能 图形 相关性 集合(抽象数据类型) 水准点(测量) 数据挖掘 理论计算机科学 数学 几何学 离散数学 程序设计语言 地理 大地测量学
作者
Heyuan Shi,Yubo Zhang,Zizhao Zhang,Nan Ma,Xibin Zhao,Yue Gao,Jiaguang Sun
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 2963-2972 被引量:68
标识
DOI:10.1109/tnnls.2018.2869747
摘要

At present, convolutional neural networks (CNNs) have become popular in visual classification tasks because of their superior performance. However, CNN-based methods do not consider the correlation of visual data to be classified. Recently, graph convolutional networks (GCNs) have mitigated this problem by modeling the pairwise relationship in visual data. Real-world tasks of visual classification typically must address numerous complex relationships in the data, which are not fit for the modeling of the graph structure using GCNs. Therefore, it is vital to explore the underlying correlation of visual data. Regarding this issue, we propose a framework called the hypergraph-induced convolutional network to explore the high-order correlation in visual data during deep neural networks. First, a hypergraph structure is constructed to formulate the relationship in visual data. Then, the high-order correlation is optimized by a learning process based on the constructed hypergraph. The classification tasks are performed by considering the high-order correlation in the data. Thus, the convolution of the hypergraph-induced convolutional network is based on the corresponding high-order relationship, and the optimization on the network uses each data and considers the high-order correlation of the data. To evaluate the proposed hypergraph-induced convolutional network framework, we have conducted experiments on three visual data sets: the National Taiwan University 3-D model data set, Princeton Shape Benchmark, and multiview RGB-depth object data set. The experimental results and comparison in all data sets demonstrate the effectiveness of our proposed hypergraph-induced convolutional network compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助猕猴桃采纳,获得10
1秒前
2秒前
felix发布了新的文献求助10
2秒前
felix发布了新的文献求助10
2秒前
felix发布了新的文献求助10
2秒前
豆豆发布了新的文献求助10
3秒前
jial发布了新的文献求助10
3秒前
3秒前
felix发布了新的文献求助10
4秒前
felix发布了新的文献求助10
4秒前
未知完成签到,获得积分10
4秒前
小郭不洗锅完成签到,获得积分10
4秒前
柏林寒冬应助雨雨雨雨采纳,获得10
4秒前
Shueason完成签到,获得积分10
7秒前
7秒前
Rondab应助科研通管家采纳,获得20
7秒前
Rondab应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
ED应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
ED应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
CR7应助科研通管家采纳,获得20
8秒前
8秒前
ED应助科研通管家采纳,获得10
8秒前
9秒前
ding应助小郭不洗锅采纳,获得30
9秒前
Shueason发布了新的文献求助10
10秒前
小二郎应助BLUE采纳,获得10
10秒前
ding应助Lisa采纳,获得10
11秒前
11秒前
jial完成签到,获得积分10
12秒前
笑哈哈发布了新的文献求助10
12秒前
慕青应助豆豆采纳,获得10
12秒前
lym97完成签到 ,获得积分10
13秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533689
关于积分的说明 11263515
捐赠科研通 3273441
什么是DOI,文献DOI怎么找? 1806049
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629