Hypergraph-Induced Convolutional Networks for Visual Classification

超图 卷积神经网络 计算机科学 成对比较 模式识别(心理学) 数据集 人工智能 图形 相关性 集合(抽象数据类型) 水准点(测量) 数据挖掘 理论计算机科学 数学 几何学 离散数学 程序设计语言 地理 大地测量学
作者
Heyuan Shi,Yubo Zhang,Zizhao Zhang,Nan Ma,Xibin Zhao,Yue Gao,Jiaguang Sun
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 2963-2972 被引量:68
标识
DOI:10.1109/tnnls.2018.2869747
摘要

At present, convolutional neural networks (CNNs) have become popular in visual classification tasks because of their superior performance. However, CNN-based methods do not consider the correlation of visual data to be classified. Recently, graph convolutional networks (GCNs) have mitigated this problem by modeling the pairwise relationship in visual data. Real-world tasks of visual classification typically must address numerous complex relationships in the data, which are not fit for the modeling of the graph structure using GCNs. Therefore, it is vital to explore the underlying correlation of visual data. Regarding this issue, we propose a framework called the hypergraph-induced convolutional network to explore the high-order correlation in visual data during deep neural networks. First, a hypergraph structure is constructed to formulate the relationship in visual data. Then, the high-order correlation is optimized by a learning process based on the constructed hypergraph. The classification tasks are performed by considering the high-order correlation in the data. Thus, the convolution of the hypergraph-induced convolutional network is based on the corresponding high-order relationship, and the optimization on the network uses each data and considers the high-order correlation of the data. To evaluate the proposed hypergraph-induced convolutional network framework, we have conducted experiments on three visual data sets: the National Taiwan University 3-D model data set, Princeton Shape Benchmark, and multiview RGB-depth object data set. The experimental results and comparison in all data sets demonstrate the effectiveness of our proposed hypergraph-induced convolutional network compared with the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
吴美思完成签到,获得积分10
1秒前
许十五完成签到,获得积分10
1秒前
yzz发布了新的文献求助10
1秒前
十月完成签到,获得积分10
2秒前
2秒前
2秒前
体贴旭尧完成签到,获得积分20
3秒前
呆萌的雅旋完成签到,获得积分10
3秒前
斯文败类应助XXQ采纳,获得10
3秒前
4秒前
5秒前
小青椒应助刚刚采纳,获得10
5秒前
5秒前
5秒前
yan完成签到,获得积分10
5秒前
1101592875应助一路硕博采纳,获得10
6秒前
棋士应助一路硕博采纳,获得10
6秒前
ZZQ完成签到 ,获得积分10
6秒前
Jared应助一路硕博采纳,获得20
6秒前
无极微光应助一路硕博采纳,获得20
6秒前
共享精神应助麦当当薯条采纳,获得10
6秒前
YH关闭了YH文献求助
6秒前
无情南琴发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
打打应助文静采纳,获得10
7秒前
wjy发布了新的文献求助10
8秒前
子涵高完成签到,获得积分20
8秒前
8秒前
LINHY应助研友_8R5zBZ采纳,获得20
8秒前
9秒前
lijiao发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
小二郎应助hyominhsu采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791