Hypergraph-Induced Convolutional Networks for Visual Classification

超图 卷积神经网络 计算机科学 成对比较 模式识别(心理学) 数据集 人工智能 图形 相关性 集合(抽象数据类型) 水准点(测量) 数据挖掘 理论计算机科学 数学 几何学 离散数学 程序设计语言 地理 大地测量学
作者
Heyuan Shi,Yubo Zhang,Zizhao Zhang,Nan Ma,Xibin Zhao,Yue Gao,Jiaguang Sun
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 2963-2972 被引量:68
标识
DOI:10.1109/tnnls.2018.2869747
摘要

At present, convolutional neural networks (CNNs) have become popular in visual classification tasks because of their superior performance. However, CNN-based methods do not consider the correlation of visual data to be classified. Recently, graph convolutional networks (GCNs) have mitigated this problem by modeling the pairwise relationship in visual data. Real-world tasks of visual classification typically must address numerous complex relationships in the data, which are not fit for the modeling of the graph structure using GCNs. Therefore, it is vital to explore the underlying correlation of visual data. Regarding this issue, we propose a framework called the hypergraph-induced convolutional network to explore the high-order correlation in visual data during deep neural networks. First, a hypergraph structure is constructed to formulate the relationship in visual data. Then, the high-order correlation is optimized by a learning process based on the constructed hypergraph. The classification tasks are performed by considering the high-order correlation in the data. Thus, the convolution of the hypergraph-induced convolutional network is based on the corresponding high-order relationship, and the optimization on the network uses each data and considers the high-order correlation of the data. To evaluate the proposed hypergraph-induced convolutional network framework, we have conducted experiments on three visual data sets: the National Taiwan University 3-D model data set, Princeton Shape Benchmark, and multiview RGB-depth object data set. The experimental results and comparison in all data sets demonstrate the effectiveness of our proposed hypergraph-induced convolutional network compared with the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夕荀发布了新的文献求助10
刚刚
跳跳熊完成签到,获得积分10
刚刚
在水一方应助勤劳的忆寒采纳,获得10
刚刚
无限的思柔完成签到,获得积分20
刚刚
顺利毕业完成签到,获得积分10
刚刚
杨梦珺发布了新的文献求助10
1秒前
alien52发布了新的文献求助10
1秒前
萌宝发布了新的文献求助10
1秒前
尼古拉耶维奇完成签到,获得积分10
1秒前
华仔应助_Dearlxy采纳,获得10
1秒前
海棠先雪完成签到,获得积分10
1秒前
史迪奇大王完成签到,获得积分10
1秒前
cc完成签到,获得积分10
2秒前
Mende完成签到,获得积分10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
兴十一发布了新的文献求助10
3秒前
魔幻的鹏笑完成签到,获得积分10
3秒前
vc完成签到,获得积分20
3秒前
纳古菌完成签到,获得积分10
3秒前
小勇仔完成签到,获得积分10
4秒前
肖坤完成签到,获得积分10
4秒前
guanguan发布了新的文献求助10
4秒前
Peggy69发布了新的文献求助10
4秒前
theverve完成签到,获得积分10
4秒前
4秒前
5秒前
今后应助ginkgoleaf采纳,获得10
5秒前
wq完成签到,获得积分10
5秒前
allglitters完成签到,获得积分10
5秒前
5秒前
5秒前
千尺焰完成签到,获得积分10
5秒前
又该看文献了完成签到 ,获得积分10
6秒前
情怀应助温柔体贴阿尔法采纳,获得10
6秒前
追寻月饼发布了新的文献求助10
6秒前
风暴之灵关注了科研通微信公众号
6秒前
lz123发布了新的文献求助10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006