Hypergraph-Induced Convolutional Networks for Visual Classification

超图 卷积神经网络 计算机科学 成对比较 模式识别(心理学) 数据集 人工智能 图形 相关性 集合(抽象数据类型) 水准点(测量) 数据挖掘 理论计算机科学 数学 几何学 离散数学 程序设计语言 地理 大地测量学
作者
Heyuan Shi,Yubo Zhang,Zizhao Zhang,Nan Ma,Xibin Zhao,Yue Gao,Jiaguang Sun
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 2963-2972 被引量:68
标识
DOI:10.1109/tnnls.2018.2869747
摘要

At present, convolutional neural networks (CNNs) have become popular in visual classification tasks because of their superior performance. However, CNN-based methods do not consider the correlation of visual data to be classified. Recently, graph convolutional networks (GCNs) have mitigated this problem by modeling the pairwise relationship in visual data. Real-world tasks of visual classification typically must address numerous complex relationships in the data, which are not fit for the modeling of the graph structure using GCNs. Therefore, it is vital to explore the underlying correlation of visual data. Regarding this issue, we propose a framework called the hypergraph-induced convolutional network to explore the high-order correlation in visual data during deep neural networks. First, a hypergraph structure is constructed to formulate the relationship in visual data. Then, the high-order correlation is optimized by a learning process based on the constructed hypergraph. The classification tasks are performed by considering the high-order correlation in the data. Thus, the convolution of the hypergraph-induced convolutional network is based on the corresponding high-order relationship, and the optimization on the network uses each data and considers the high-order correlation of the data. To evaluate the proposed hypergraph-induced convolutional network framework, we have conducted experiments on three visual data sets: the National Taiwan University 3-D model data set, Princeton Shape Benchmark, and multiview RGB-depth object data set. The experimental results and comparison in all data sets demonstrate the effectiveness of our proposed hypergraph-induced convolutional network compared with the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温乐松发布了新的文献求助10
刚刚
差差你在干什么完成签到,获得积分10
1秒前
pretty完成签到 ,获得积分10
1秒前
天天快乐应助墨小菊采纳,获得10
1秒前
一亩蔬菜发布了新的文献求助10
2秒前
耶喽小黄完成签到,获得积分10
2秒前
3秒前
3秒前
lavande发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
Cookie发布了新的文献求助10
6秒前
是个哑巴发布了新的文献求助10
6秒前
lty完成签到,获得积分10
6秒前
蔡蔡完成签到 ,获得积分10
6秒前
JamesPei应助吃薯条采纳,获得10
7秒前
7秒前
Udo发布了新的文献求助10
8秒前
Xgg完成签到 ,获得积分10
10秒前
xueshu发布了新的文献求助10
11秒前
11秒前
Zzz发布了新的文献求助20
11秒前
Pom完成签到,获得积分10
11秒前
酷波er应助Yuting采纳,获得10
12秒前
12秒前
Cookie完成签到,获得积分10
14秒前
小乔应助黎明之前采纳,获得10
15秒前
剧院的饭桶完成签到,获得积分10
16秒前
xcc发布了新的文献求助10
16秒前
17秒前
Ganyuan完成签到 ,获得积分10
18秒前
赘婿应助ryan采纳,获得10
18秒前
彬彬发布了新的文献求助10
19秒前
linllll完成签到,获得积分10
19秒前
19秒前
吴未完成签到,获得积分10
19秒前
19秒前
21秒前
房房不慌完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812