Transfer learning with convolutional neural networks for small sample size problem in machinery fault diagnosis

杠杆(统计) 卷积神经网络 学习迁移 计算机科学 断层(地质) 样品(材料) 人工智能 机器学习 人工神经网络 试验数据 样本量测定 数据挖掘 统计 数学 程序设计语言 化学 地震学 地质学 色谱法
作者
Dengyu Xiao,Yixiang Huang,Chengjin Qin,Zhiyu Liu,Yanming Li,Chengliang Liu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:233 (14): 5131-5143 被引量:80
标识
DOI:10.1177/0954406219840381
摘要

Data-driven machinery fault diagnosis has gained much attention from academic research and industry to guarantee the machinery reliability. Traditional fault diagnosis frameworks are commonly under a default assumption: the training and test samples share the similar distribution. However, it is nearly impossible in real industrial applications, where the operating condition always changes over time and the quantity of the same-distribution samples is often not sufficient to build a qualified diagnostic model. Therefore, transfer learning, which possesses the capacity to leverage the knowledge learnt from the massive source data to establish a diagnosis model for the similar but small target data, has shown potential value in machine fault diagnosis with small sample size. In this paper, we propose a novel fault diagnosis framework for the small amount of target data based on transfer learning, using a modified TrAdaBoost algorithm and convolutional neural networks. First, the massive source data with different distributions is added to the target data as the training data. Then, a convolutional neural network is selected as the base learner and the modified TrAdaBoost algorithm is employed for the weight update of each training sample to form a stronger diagnostic model. The whole proposition is experimentally demonstrated and discussed by carrying out the tests of six three-phase induction motors under different operating conditions and fault types. Results show that compared with other methods, the proposed framework can achieve the highest fault diagnostic accuracy with inadequate target data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
ADAGIO完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
专注狗完成签到,获得积分10
2秒前
科研通AI5应助目光所致采纳,获得10
2秒前
3秒前
3秒前
耶耶耶发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
tfming发布了新的文献求助10
6秒前
j1259898920关注了科研通微信公众号
6秒前
小小鱼完成签到,获得积分10
6秒前
乱莱发布了新的文献求助10
6秒前
鹿茸与共发布了新的文献求助10
6秒前
慢慢发布了新的文献求助10
6秒前
wy发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
7秒前
fsrm发布了新的文献求助10
7秒前
YaoHui发布了新的文献求助10
8秒前
xiao发布了新的文献求助10
8秒前
苹果柜子完成签到,获得积分10
9秒前
9秒前
研友_VZG7GZ应助大白采纳,获得10
10秒前
10秒前
10秒前
LC发布了新的文献求助10
10秒前
10秒前
哇哇哇发布了新的文献求助20
10秒前
科目三应助耶耶耶采纳,获得10
11秒前
AHR发布了新的文献求助10
11秒前
12秒前
DI发布了新的文献求助30
12秒前
汉堡包应助大方荷花采纳,获得10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744546
求助须知:如何正确求助?哪些是违规求助? 3287344
关于积分的说明 10053592
捐赠科研通 3003606
什么是DOI,文献DOI怎么找? 1649173
邀请新用户注册赠送积分活动 785060
科研通“疑难数据库(出版商)”最低求助积分说明 750937