Density Peak Covariance Matrix for Feature Extraction of Hyperspectral Image

高光谱成像 协方差矩阵 特征提取 模式识别(心理学) 人工智能 图像(数学) 萃取(化学) 特征(语言学) 计算机科学 协方差 计算机视觉 数学 算法 统计 化学 色谱法 哲学 语言学
作者
Guangzhe Zhao,Nanying Li,Bing Tu,Wei He
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 534-538 被引量:6
标识
DOI:10.1109/lgrs.2019.2926396
摘要

The clustering methods have a good application in many aspects, in which the density peak (DP) clustering can effectively cluster similar neighboring pixels so that the features can be extracted well for hyperspectral images (HSIs) classification. In this work, a DP based covariance matrix (DPCM) method is proposed for the feature extraction of HSIs, which not only can effectively extract features but also can reduce the within-class variations and the between-class interference. The proposed method consists of the following steps: First, maximum noise fraction is employed on the original HSI to reduce the computational complexity and eliminate noise. Second, the local densities of the sample are calculated by the DP clustering. Therefore, a reconstructed image can be obtained in which each pixel has a density feature vector. Then, the covariance matrix between each density pixel in the density map is calculated. Last, the extracted covariance matrices are fed back to the support vector machine based on the logarithm Euclidean kernel for label assignment. Experiments are conducted on the Indian pine data set, in which each of the five randomly selected marker data are selected as the training sample. The experimental results show that the method can effectively improve the classification accuracy and is superior to other classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mandy完成签到,获得积分10
刚刚
1秒前
脑洞疼应助qaq采纳,获得10
1秒前
世界尽头发布了新的文献求助10
1秒前
小二郎应助科研民工采纳,获得10
1秒前
2秒前
无奈满天发布了新的文献求助10
2秒前
3秒前
MADKAI发布了新的文献求助10
3秒前
3秒前
贪玩丸子完成签到,获得积分10
3秒前
神勇的雅香应助liutaili采纳,获得10
4秒前
KSGGS完成签到,获得积分10
4秒前
YANG关注了科研通微信公众号
4秒前
5秒前
5秒前
5秒前
99发布了新的文献求助10
6秒前
6秒前
科研通AI5应助qi采纳,获得10
6秒前
乐乐发布了新的文献求助10
7秒前
铸一字错发布了新的文献求助10
7秒前
受伤书文完成签到,获得积分10
8秒前
Yvonne发布了新的文献求助10
8秒前
8秒前
温柔的十三完成签到,获得积分10
8秒前
Ll发布了新的文献求助10
9秒前
nikai发布了新的文献求助10
9秒前
圣晟胜发布了新的文献求助10
9秒前
大个应助科研通管家采纳,获得10
9秒前
9秒前
田様应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
Leif应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
shouyu29应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759