Density Peak Covariance Matrix for Feature Extraction of Hyperspectral Image

高光谱成像 协方差矩阵 特征提取 模式识别(心理学) 人工智能 图像(数学) 萃取(化学) 特征(语言学) 计算机科学 协方差 计算机视觉 数学 算法 统计 化学 色谱法 哲学 语言学
作者
Guangzhe Zhao,Nanying Li,Bing Tu,Wei He
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 534-538 被引量:6
标识
DOI:10.1109/lgrs.2019.2926396
摘要

The clustering methods have a good application in many aspects, in which the density peak (DP) clustering can effectively cluster similar neighboring pixels so that the features can be extracted well for hyperspectral images (HSIs) classification. In this work, a DP based covariance matrix (DPCM) method is proposed for the feature extraction of HSIs, which not only can effectively extract features but also can reduce the within-class variations and the between-class interference. The proposed method consists of the following steps: First, maximum noise fraction is employed on the original HSI to reduce the computational complexity and eliminate noise. Second, the local densities of the sample are calculated by the DP clustering. Therefore, a reconstructed image can be obtained in which each pixel has a density feature vector. Then, the covariance matrix between each density pixel in the density map is calculated. Last, the extracted covariance matrices are fed back to the support vector machine based on the logarithm Euclidean kernel for label assignment. Experiments are conducted on the Indian pine data set, in which each of the five randomly selected marker data are selected as the training sample. The experimental results show that the method can effectively improve the classification accuracy and is superior to other classification methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SJJ应助June采纳,获得30
2秒前
小透明应助June采纳,获得30
2秒前
3秒前
3秒前
上官若男应助liao采纳,获得10
5秒前
PubLing_完成签到,获得积分10
6秒前
hexy629发布了新的文献求助20
8秒前
科研通AI6应助ll采纳,获得10
8秒前
神奇小鹿完成签到 ,获得积分10
8秒前
Lucas应助wss采纳,获得10
8秒前
9秒前
干净的谷南完成签到,获得积分10
10秒前
成就凡双应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
元谷雪应助科研通管家采纳,获得10
11秒前
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
成就凡双应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
小马驹完成签到,获得积分10
12秒前
12秒前
黑皮金刚完成签到,获得积分10
13秒前
Jasper应助李蕊采纳,获得10
14秒前
JamesPei应助小乐儿~采纳,获得10
14秒前
小正发布了新的文献求助10
14秒前
18秒前
星辰大海应助木子采纳,获得10
20秒前
20秒前
阿良完成签到,获得积分10
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527