Density Peak Covariance Matrix for Feature Extraction of Hyperspectral Image

高光谱成像 协方差矩阵 特征提取 模式识别(心理学) 人工智能 图像(数学) 萃取(化学) 特征(语言学) 计算机科学 协方差 计算机视觉 数学 算法 统计 化学 色谱法 哲学 语言学
作者
Guangzhe Zhao,Nanying Li,Bing Tu,Wei He
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 534-538 被引量:6
标识
DOI:10.1109/lgrs.2019.2926396
摘要

The clustering methods have a good application in many aspects, in which the density peak (DP) clustering can effectively cluster similar neighboring pixels so that the features can be extracted well for hyperspectral images (HSIs) classification. In this work, a DP based covariance matrix (DPCM) method is proposed for the feature extraction of HSIs, which not only can effectively extract features but also can reduce the within-class variations and the between-class interference. The proposed method consists of the following steps: First, maximum noise fraction is employed on the original HSI to reduce the computational complexity and eliminate noise. Second, the local densities of the sample are calculated by the DP clustering. Therefore, a reconstructed image can be obtained in which each pixel has a density feature vector. Then, the covariance matrix between each density pixel in the density map is calculated. Last, the extracted covariance matrices are fed back to the support vector machine based on the logarithm Euclidean kernel for label assignment. Experiments are conducted on the Indian pine data set, in which each of the five randomly selected marker data are selected as the training sample. The experimental results show that the method can effectively improve the classification accuracy and is superior to other classification methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jiajiajiamin完成签到,获得积分10
刚刚
ARES昔年完成签到,获得积分10
1秒前
能姐发布了新的文献求助10
1秒前
1秒前
Owen应助果粒橙橙子采纳,获得10
1秒前
薖上完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
kkk发布了新的文献求助10
2秒前
英姑应助黑叔叔采纳,获得10
3秒前
零源发布了新的文献求助10
3秒前
renpp发布了新的文献求助10
3秒前
勇胜完成签到,获得积分20
3秒前
小仙女发布了新的文献求助10
3秒前
111966完成签到,获得积分10
4秒前
adu发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
Areeha发布了新的文献求助10
5秒前
5秒前
星星完成签到,获得积分10
5秒前
酷波er应助零源采纳,获得10
6秒前
6秒前
carly发布了新的文献求助10
6秒前
婉君完成签到,获得积分10
6秒前
6秒前
6秒前
un发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
开朗阁完成签到,获得积分10
7秒前
7秒前
孤影完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300