亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Density Peak Covariance Matrix for Feature Extraction of Hyperspectral Image

高光谱成像 协方差矩阵 特征提取 模式识别(心理学) 人工智能 图像(数学) 萃取(化学) 特征(语言学) 计算机科学 协方差 计算机视觉 数学 算法 统计 化学 色谱法 哲学 语言学
作者
Guangzhe Zhao,Nanying Li,Bing Tu,Wei He
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 534-538 被引量:6
标识
DOI:10.1109/lgrs.2019.2926396
摘要

The clustering methods have a good application in many aspects, in which the density peak (DP) clustering can effectively cluster similar neighboring pixels so that the features can be extracted well for hyperspectral images (HSIs) classification. In this work, a DP based covariance matrix (DPCM) method is proposed for the feature extraction of HSIs, which not only can effectively extract features but also can reduce the within-class variations and the between-class interference. The proposed method consists of the following steps: First, maximum noise fraction is employed on the original HSI to reduce the computational complexity and eliminate noise. Second, the local densities of the sample are calculated by the DP clustering. Therefore, a reconstructed image can be obtained in which each pixel has a density feature vector. Then, the covariance matrix between each density pixel in the density map is calculated. Last, the extracted covariance matrices are fed back to the support vector machine based on the logarithm Euclidean kernel for label assignment. Experiments are conducted on the Indian pine data set, in which each of the five randomly selected marker data are selected as the training sample. The experimental results show that the method can effectively improve the classification accuracy and is superior to other classification methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助蜘蛛侠采纳,获得10
1秒前
乐乐应助迷路的尔竹采纳,获得10
7秒前
Yygz314完成签到,获得积分10
7秒前
liuynnn完成签到,获得积分20
8秒前
webmaster完成签到,获得积分10
12秒前
NexusExplorer应助坩埚甘茶白采纳,获得10
15秒前
阳光迎夏完成签到 ,获得积分10
17秒前
17秒前
充电宝应助xuz采纳,获得10
19秒前
19秒前
益笙鸿老板完成签到 ,获得积分10
20秒前
SiboN完成签到,获得积分10
21秒前
张流筝完成签到 ,获得积分10
21秒前
21秒前
高兴可乐完成签到,获得积分20
26秒前
liuynnn发布了新的文献求助10
27秒前
平凡完成签到,获得积分10
28秒前
wanci应助开朗问晴采纳,获得10
28秒前
32秒前
38秒前
所所应助xuz采纳,获得10
39秒前
华仔应助Bokuto采纳,获得10
41秒前
老王发布了新的文献求助10
46秒前
充电宝应助江经纬采纳,获得10
46秒前
李爱国应助强健的长颈鹿采纳,获得10
50秒前
戳戳完成签到 ,获得积分10
52秒前
搜集达人应助德尔塔捱斯采纳,获得10
54秒前
完美世界应助xuz采纳,获得10
57秒前
58秒前
科目三应助xalone采纳,获得10
1分钟前
1分钟前
1分钟前
111关闭了111文献求助
1分钟前
1分钟前
lokiyyy完成签到,获得积分10
1分钟前
时光机带哥走完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ding应助清浅采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664012
求助须知:如何正确求助?哪些是违规求助? 4856247
关于积分的说明 15106917
捐赠科研通 4822415
什么是DOI,文献DOI怎么找? 2581446
邀请新用户注册赠送积分活动 1535597
关于科研通互助平台的介绍 1493881